Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Емкость для хранения водорода
Изобретения Российской Федерации » Устройства и способы получения водорода и кислород
Емкость для хранения водорода Изобретение относится к области водородной энергетики - аккумулированию и хранению водорода. Емкость для хранения водорода состоит из герметичного корпуса, технологических патрубков и размещенных в корпусе пучка полых капилляров, открытые концы которых выведены в коллектор подачи-выпуска водорода, и нагревателя, расположенного в коллекторе. Открытые концы капилляров, расположенные в коллекторе, выполнены сужающимися. Свободное пространство коллектора до нагревателя заполнено герметизирующим...
читать полностью


» Изобретения Российской Федерации » Устройства и способы получения водорода и кислород
Добавить в избранное
Мне нравится 0


Сегодня читали статью (2)
Пользователи :(0)
Пусто

Гости :(2)
0
Добавить эту страницу в свои закладки на сайте »

Емкость для хранения водорода


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2283454

Имя изобретателя: Чабак Александр Федорович (RU)  
Имя патентообладателя: Чабак Александр Федорович (RU) 
Адрес для переписки: 123585, Москва, ул. Берзарина, 19, к.1, кв.203, А.Ф. Чабаку
Дата начала действия патента: 2005.07.08

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Ноу-хау разработки, а именно данное изобретение автора относится к области водородной энергетики - аккумулированию и хранению водорода, который в настоящее время используется в химическом, транспортном машиностроении и других отраслях промышленности.

Известны устройства для аккумулирования водорода, основанные на связывании водорода в твердом материале (например, в гидридах металлов или сорбция на поверхности дисперсных наноматериалов), (RU 2037737, RU 2038525, МПК F 17 С 5/04), эти устройства для аккумулирования и хранения водорода являются наиболее взрывобезопасными из существующих, т.к. водород не имеет избыточного давления, но такие системы инерционны и требуют определенного времени (порядка несколько минут) для начала работы, поглощение и выделение водорода происходит со значительными тепловыми эффектами. Кроме того, весовое содержание водорода - отношение веса водорода, содержащегося в аккумуляторе, к весу самого аккумулятора - 4,5% - является очень низким. Весовое содержание зависит как от количества водорода в аккумулирующем материале, так и от удельного веса аккумулирующего материала.

Известна емкость для хранения водорода (RU 2222749, МПК F 17 С 5/04), представляющая собой герметичный кожух с внутренним сосудом для хранения сжиженного водорода, при этом система газозаполнения выполнена так, что позволяет сократить потери водорода, снизить время заправки емкости. Емкость для водородного автомобиля (Шварц А. Автомобиль будущего. Ж. Вестник, №10 (347), стр.1-5, 12.05.2004 г.), выполнена из прочных композитных относительно легких материалов. Последняя модификация с баллонами под давлением имеет объем 90 литров, массу 40 кг, давление водорода 400 атм. Оценки показывают, что в этом случае в емкости может быть запасено 3,2 кг водорода, следовательно, весовое содержание водорода равно 3,2/40×100%=8%. Недостатками емкости является взрывоопасность и низкое содержание водорода на единицу объема, до 400 л водорода на 1 литр.

Известно, что можно хранить водород в полых волокнах-капиллярах, выполненных из стекла (Yan K.L., Sellars B.C., Lo I. et al. Storage of hydrogen by high pressure microencapsulation in glass // Intern. J. Hydrogen. Energy. 1985. Vol.10, N 18. P.517-522). Полые капилляры длиной 15 см, диаметром 160-260 мкм, толщиной оболочки 16-35 мкм запаивались с двух сторон. Затем капилляры помещались в объем, где создавалось давление водорода 700 ата, и при нагревании до 300°С происходило насыщение внутренней полости капилляров водородом. После охлаждения водород оставался внутри капилляров, а при нагревании выходил наружу. Такая система является взрывобезопасной, но весовое содержание водорода в такой системе составляет 4,2%. Такое содержание водорода является очень низким для создания промышленно применимых емкостей для хранения водорода. Кроме того, заполнение и извлечение водорода необходимо проводить при температурах 300°С и выше. При этом заправка и извлечение водорода протекает медленно и длится несколько часов, при этом временные требования к заправке емкостей составляют 4-10 минут.

rnrnrnrnrnrnrnrnrn

Известна емкость для хранения и аккумулирования водорода, состоящая из герметичного корпуса, технологических патрубков, внутренней теплообменной поверхности и наполнителя-аккумулятора водорода, представляющего собой порошок интерметаллида. (RU 2037737, МПК Р 17 С 5/04 - прототип). Недостатками изобретения является то, что поглощение и выделение водорода происходит со значительными тепловыми эффектами, кроме того, весовое содержание водорода - отношение веса водорода содержащегося в емкости к весу самой емкости - 4,5% - является очень низким. Техническим результатом, на которое направлено изобретение, является создание емкости для безопасного хранения водорода, за счет того что емкость не находится под давлением, температура зарядки и разрядки емкости проходит при пониженных температурах - до 250°С, при этом обеспечивается весовое содержание водорода выше 6% и время зарядки водородом до 10 минут.

Для достижения указанного результата предложена емкость для хранения водорода, состоящая из герметичного корпуса, коллектора подачи и выпуска водорода, нагревателя и наполнителя-аккумулятора водорода, выполненного из пористого материала и размещенного в корпусе, при этом на часть внешней поверхности наполнителя-аккумулятора водорода, соединенной с коллектором подачи и выпуска водорода, нанесен слой материала с высокой проницаемостью для водорода, или с низкой температурой плавления, или с низкой температурой деструкции, на остальную часть поверхности нанесено водородонепроницаемое покрытие, а нагреватель расположен на уровне вышеуказанного слоя.

Слой материала с высокой проницаемостью для водорода выполнен из сплавов палладия, или никеля, или полимерных материалов.

Слой материала с низкой температурой плавления выполнен из сплава Вуда, или сплава Деварда, или сплавов висмута, или свинца, или олова, или полимерных материалов.

Слой материала с низкой температурой деструкции выполнен из полимерных материалов или металлоорганических соединений. Пористый материал представляет собой пеноникель, или пеноалюминий, или пенополимер, или пеносиликат.

Пористый материал представляет собой нанотрубки. Водородонепроницаемое покрытие выполнено из металлов, например меди или ее сплавов, или керамики, или стекла.

Кроме того, наполнитель-аккумулятор водорода выполнен в виде отдельных герметизированных секций, каждая из которых соединена со своим нагревателем.

Для достижения вышеуказанного технического результата предложена емкость для хранения водорода, состоящая из герметичного корпуса, коллектора подачи и выпуска водорода и наполнителя-аккумулятора водорода, размещенного в корпусе и выполненного в виде пучка полых капилляров, снабженного защитным покрытием, при этом торцы капилляров соединены с коллектором подачи и выпуска водорода, покрытие выполнено на торцевых поверхностях пучка в виде слоя материала с высокой проницаемостью для водорода, или с низкой температурой плавления, или с низкой температурой деструкции, а на уровне вышеуказанного слоя расположен нагреватель.

Слой материала с высокой проницаемостью для водорода выполнен из сплавов палладия, или никеля, или полимерных материалов.

Слой материала с низкой температурой плавления выполнен из сплава Вуда, или сплава Деварда, или сплавов висмута, или свинца, или олова, или полимерных материалов.

rnrnrnrnrnrnrnrnrn

Слой материала с низкой температурой деструкции выполнен из полимерных материалов или металлоорганических соединений.

Капилляры выполнены из стекла, или углерода, или металла, или полимерных материалов.

Наполнитель-аккумулятор водорода выполнен в виде намотанного на оправку пучка капилляров.

Защитное покрытие выполнено из металла с низкой проницаемостью водорода и нанесено на внешнюю поверхность пучка капилляров, выполненных из стекла, или полимера, или углерода.

Кроме того, наполнитель-аккумулятор водорода выполнен из капилляров разного диаметра, при этом диаметр внешних капилляров меньше диаметра внутренних капилляров. Капилляры соединены друг с другом. Наполнитель-аккумулятор водорода выполнен в виде отдельных герметизированных секций, каждая из которых соединена со своим нагревателем.

Для достижения вышеуказанного технического результата предложена емкость для хранения водорода, состоящая из герметичного корпуса, коллектора подачи и выпуска водорода и наполнителя-аккумулятора водорода, размещенного в корпусе и выполненного в виде пучка полых капилляров, снабженного защитным покрытием, при этом одни торцы капилляров соединены с коллектором подачи и выпуска водорода, а другие загерметизированы, покрытие выполнено на торцевой поверхности пучка капилляров, соединенных с коллектором, и выполнено в виде слоя материала с высокой проницаемостью для водорода, или с низкой температурой плавления, или с низкой температурой деструкции, а на уровне вышеуказанного слоя расположен нагреватель.

Слой материала с высокой проницаемостью для водорода выполнен из сплавов палладия, или никеля, или полимерных материалов.

Слой материала с низкой температурой плавления выполнен из сплава Вуда, или сплава Деварда, или сплавов висмута, или свинца, или олова, или полимерных материалов.

Слой материала с низкой температурой деструкции выполнен из полимерных материалов или металлоорганических соединений.

Капилляры выполнены из стекла, или углерода, или металла, или полимерных материалов.

Наполнитель-аккумулятор водорода - выполнен в виде намотанного на оправку пучка капилляров. На внешнюю поверхность пучка капилляров, выполненных из стекла, или полимера, или углерода, нанесено защитное покрытие из металла с низкой проницаемостью водорода.

Наполнитель-аккумулятор водорода выполнен из капилляров разного диаметра, при этом диаметр внешних капилляров меньше диаметра внутренних капилляров. Капилляры соединены друг с другом.

Наполнитель-аккумулятор водорода выполнен в виде отдельных герметизированных секций, каждая из которых соединена со своим нагревателем.

Предложенные конструктивные выполнения емкостей для хранения водорода имеют общее назначение и позволяют достичь одного результата, в одном случае накопитель-аккумулятор водорода представляет собой пористый материал, а в другом - капиллярную систему, при этом накопитель соединен с коллектором подачи и выпуска водорода, а регулирование подачи и выпуска водорода из накопителя происходит через слой определенного материала со специально подобранными свойствами. При этом корпус емкости находится не под давлением, а возможность разгерметизации и утечки водорода минимизирована, так как имеется несколько барьеров, препятствующих выходу водорода.

общий вид емкости для хранения водорода для варианта выполнения накопителя-аккумулятора водорода из пористого материала фрагмент емкости в случае выполнения накопителя 4 в виде отдельных герметизированных секций, как в случае выполнения накопителя из пористого материала 6, так и для выполнения его из капилляров 10

На фиг.1 дан общий вид емкости для хранения водорода для варианта выполнения накопителя-аккумулятора водорода из пористого материала, где 1 - корпус, 2 - коллектор подачи-выпуска водорода, 3 - нагреватель, 4 - наполнитель-аккумулятор водорода, 5 - водородонепроницаемое покрытие, 6 - пористый материал, 7 - слой, регулирующий подачу и выпуск водорода в накопитель, 8 - патрубок подачи и выпуска водорода.

rnrnrnrnrnrnrnrnrn

На фиг.2 дан фрагмент емкости в случае выполнения накопителя 4 в виде отдельных герметизированных секций, как в случае выполнения накопителя из пористого материала 6, так и для выполнения его из капилляров 10.

общий вид емкости для хранения водорода для варианта выполнения накопителя-аккумулятора водорода 4 из пучка капилляров 9 с нанесенным слоем 7, регулирующим подачу-выпуск водорода в накопитель 4 на обе торцевые поверхности пучка капилляров. общий вид емкости для хранения водорода для варианта выполнения накопителя-аккумулятора водорода 4 из пучка капилляров для случая, когда слой 7, регулирующий подачу и выпуск водорода в накопитель 4, нанесен на одну из торцевых поверхностей капилляров, а другой конец каждого капилляра 10 загерметизирован.

На фиг.3 дан общий вид емкости для хранения водорода для варианта выполнения накопителя-аккумулятора водорода 4 из пучка капилляров 9 с нанесенным слоем 7, регулирующим подачу-выпуск водорода в накопитель 4 на обе торцевые поверхности пучка капилляров.

На фиг.4 дан общий вид емкости для хранения водорода для варианта выполнения накопителя-аккумулятора водорода 4 из пучка капилляров для случая, когда слой 7, регулирующий подачу и выпуск водорода в накопитель 4, нанесен на одну из торцевых поверхностей капилляров, а другой конец каждого капилляра 10 загерметизирован.

отдельная герметизированная секция, выполненная из капилляров 10 разного диаметра, соединенных друг с другом вдоль образующей 11.

На фиг.5 показана отдельная герметизированная секция, выполненная из капилляров 10 разного диаметра, соединенных друг с другом вдоль образующей 11.

Емкость для хранения водорода можно выполнить в виде цилиндрическою баллона (фиг.1), в герметичном корпусе 1 которого расположены накопитель-аккумулятор водорода 4, в верхней части корпуса 1 установлен коллектор подачи и выпуска водорода 2, соединенный патрубком подачи и выпуска водорода 8 с потребителем. На поверхности накопителя 4, обращенной к коллектору 2, нанесен слой 7, регулирующий подачу и выпуск водорода в накопитель 4. На уровне этого слоя расположен нагреватель 3. Он может быть расположен как снаружи, так и внутри коллектора 2.

Емкость для хранения водорода работает следующим образом

Водород при избыточном давлении подается в коллектор подачи и выпуска водорода 2 через патрубок 8. В случае выполнения слоя 7, регулирующего подачу и выпуск водорода в накопитель 4 из материала с высокой проницаемостью водорода при заданных рабочих температурах 100-250°, включают нагреватель 3, слой 7 нагревается, водород диффундирует через него и заполняет наполнитель-аккумулятор водорода 4, который может представлять собой пористый материал 6 или пучки полых капилляров 9. Слой материала с высокой проницаемостью для водорода может быть выполнен из сплавов палладия, или никеля, или полимерных материалов, например ароматических полиамидов. Коэффициент проницаемости по водороду для таких материалов при рабочих температурах, при которых происходит зарядка-разрядка емкости 100-250°, составляет до (2,0-3,6)·10-4 см2/(с·ат1/2).

Если накопитель 4 выполнен из пористого материала, например пеноникеля, или пеноалюминия, или пенополимера, или пеносиликата или углеродных нанотрубок, то вся поверхность, не соединенная с коллектором 2 и не покрытая слоем 7, должна быть герметизирована водородонепроницаемым покрытием 5 при рабочих температурах. Это покрытие может быть выполнено из металлов, например стали, меди или ее сплавов, керамики, стекла. Их проницаемость по водороду равна для стекла до 10-16 см /(с·ат1/2), для хромоникелевой стали до 10 -18 см2/(с·ат1/2).

В этом случае водород при рабочем давлении заполняет весь объем накопителя, а корпус емкости находится не под давлением.

Если накопитель 4 выполнен из полых капилляров, то водород заполняет внутреннее пространство капилляров 10 (фиг.3 и фиг.4) через их открытые торцы, заведенные в коллектор 2. В этом случае слой 7 нанесен на торцевые поверхности капилляров 10. В случае выполнения накопителя 4 из отдельных герметичных секций, как показано на фиг.2, на поверхность каждой секции, обращенной к коллектору 2, нанесен слой 7, регулирующий подачу и выпуск водорода. На уровне этого слоя расположен нагреватель 3 отдельно для каждой секции. После окончания процесса заполнения нагреватель 3 выключают, слой 7 охлаждается и запирает водород в накопителе 4. Давление в коллекторе 2 сбрасывается. Для извлечения водорода из накопителя 4 включают нагреватель 3 и, регулируя температуру нагревателя, а следовательно, и температуру слоя 7, регулируют давление водорода в коллекторе 2 подачи и выпуска водорода.

Возможны и другие способы воздействия на слой с высокой проницаемостью водорода 7. Вместо изменения температуры возможно использование ультразвука, высокочастотных полей - СВЧ, электрического потенциала и других воздействий. В случае применения слоя 7, регулирующего подачу и выпуск водорода из материала с низкой температурой плавления, процесс заполнения емкости водородом осуществляется следующим образом. Слой 7 материала с низкой температурой плавления, который может быть выполнен из сплава Вуда, или сплава Деварда, или сплавов висмута, или свинца, или олова, или полимерных материалов (температуры плавления лежат в пределах 40-250°), в виде гранулированного материала нанесен на поверхность накопителя 4, обращенную в коллектор 2.

Водород при избыточном давлении подается в коллектор 2 подачи и выпуска водорода. При достижении требуемого избыточного давления и создания этого давления в пористом материале или капиллярах включается нагреватель 3, гранулы расплавляются, и легкоплавкий материал покрывает поверхность накопителя 3, обращенную в коллектор 2. Затем нагреватель 3 выключается, легкоплавкий материал остывает и герметизирует пористый материал 6 или капилляры 10. Давление в коллекторе 2 сбрасывается. Емкость заполнена водородом. При этом корпус 1 емкости также находится не под давлением, а процесс зарядки проходит при температурах 40-250°.

Для извлечения водорода из емкости включается нагреватель 3, легкоплавкий материал расплавляется и вытесняется из поверхностных слоев пористого материала 6 или капилляров 10 избыточным давлением водорода. Водород поступает в коллектор 2 и через патрубок 8 потребителю. Для плавного регулирования давления наполнитель-аккумулятор 4 водорода может быть выполнен в виде отдельных герметизированных секций, каждая из которых соединена со своим нагревателем. В случае применения слоя 7, регулирующего подачу и выпуск водорода из материала с низкой температурой деструкции, например карбоциклические соединения типа C10H8-группа нафталина (температура плавления ˜80,3°С, температура кипения 218°С), полиэтилена, которые становятся пластичными при их нагревании до температуры ˜80-200°С, то они также в виде гранулированного материала наносятся на поверхность накопителя 4, обращенную в коллектор 2.

В коллекторе 2 создается высокое давление водорода, которым насыщается пористый материал 6 или капилляры 10. Нагревателем 3 повышается температура, материал слоя 7 становится пластичным и герметизирует пористую структуру 6 или капилляры 10. Для извлечения водорода из накопителя-аккумулятора 4 водорода материал нагревается до более высокой температуры (для соединений группы нафталина температура кипения 218°С, для металлоорганического соединения, например карбонильных соединений хрома, молибдена, вольфрама, температура возгонки составляет соответственно 147°, 156° и 175°С), в результате чего происходит его либо деструкция, возгонка, либо он переходит в вязкую или жидкую фазу. Под действием высокого давления водорода, хранящегося в накопителе 4, нарушается герметизация, и водород поступает в коллектор 2 и через патрубок 8 потребителю. Для плавного регулирования давления водорода в коллекторе 2 накопитель 4 также может быть выполнен секционным, а нагреватель расположен в каждой секции. Полимеризация и деструкция полимерного материала или металлоорганического соединения может осуществляться не только изменением температурного режима, но и электрическими разрядами или излучением, например ультрафиолетовым. Полые капилляры, собранные в пучки, могут быть изготовлены из стекла, или углерода, или металла, или полимерных материалов, таких как полиэтилентерефталат, ароматические полиамиды.

Накопитель-аккумулятор 4 водорода может быть выполнен в виде намотанного на оправку пучка капилляров 9 или одного капилляра.

Для лучшей герметизации накопителя 4 на внешнюю поверхность пучка капилляров или капилляра, выполненных из стекла, или полимера, или углерода, можно нанести водородонепроницаемое покрытие 5 из металла при рабочих температурах. Такое же покрытие 5 наносится на поверхность отдельной секции накопителя 4, выполненного из капилляров (фиг.2).

На фиг.5 показана такая секция, набранная из полых капилляров 10 разного диаметра и соединенных между собой вдоль образующих 11. Капилляры могут быть склеены (в случае полимерных капилляров) или соединены диффузионной сваркой (в случае металлических капилляров). При выполнении капилляров меньшего диаметра по периферии накопителя (или отдельной секции) происходит снижение напряжения в стенках капилляров, т.е. внешние стенки становятся разгруженными от высокого давления водорода, что еще больше повышает безопасность емкости. Покажем возможность реализации изобретения.

В настоящее время налажено производство пучков, состоящих из 120 стеклянных полых капилляров (длина каждого капилляра 20000 метров, внешний диаметр 11 мкм, внутренний диаметр 5 мкм). Пучок капилляров наматывается на оправку. Вес пучка 380 грамм. Внутренний объем капилляров 47,1 мл. Предел прочности стекла при растяжении 20000 атм. При создании давления водорода внутри капилляров 1000 атм содержание водорода в капиллярах составит 47,1 литра или 4,2 грамма. Весовое содержание водорода в капиллярах 4,2:380×100%=1,1%. При давлении ниже предела прочности в 2 раза, т.е. при 10000 ати, весовое содержание водорода составит 11%.

Для аналогичных пучков, состоящих из капилляров с внешним диаметром 110 мкм, а внутренним 100 мкм, вес 20000 метров пучка равен 82,4 грамма, содержание водорода в нем при 1000 атм равно 17,0 грамм, что составляет 8,5% вес. Соответственно при давлении 2000 атм - 34% вес. Таким образом, получаем высокое весовое содержание водорода.

Пример 1
В пучке капилляров (1000 шт) общей длиной 100 метров с внешним диаметром 110 мкм, внутренним диаметром 100 мкм торцы капилляров были герметизированы сплавом с высокой проницаемостью по водороду - сплавом палладия с серебром. Вес капилляров равен 421 миллиграмма. Торцы капилляров поместили в коллектор подачи и выпуска водорода, нагрели до 150°С и создали давление водорода внутри капилляра 500 ати. Затем при этом давлении охладили до комнатной температуры и взвесили. Вес капилляра с водородом был равен 456 миллиграммов. Следовательно, содержание водорода в нем составляло 35 мг, что соответствует 8,3% весовых. Время заполнения водородом 10 минут.

Пример 2
Небольшой объем пористого материала - пеноникеля весом 2, 4 г (пористость 98%, плотность 0,4 г/см3) помещали в стальной герметичный сосуд, на часть поверхности пористого материала, соединенного с коллектором, наносили слой из материала с высокой проницаемостью для водорода - сплав палладия с серебром. В коллекторе создавали давление водорода 700 ати, слой нагревали до температуры 250°С. Вес сосуда увеличился на 170 мг. Это соответствует весовому содержанию водорода в сосуде 7,1% вес. Время заправки водородом составляло 8 минут.

Пример 3
Пучок капилляров (1000 шт.) с внутренним диаметром 100 мкм, внешним диаметром 110 мкм, общей длиной 100 метров соединены друг с другом по образующим - склеены. Нижние торцы капилляров заварены. На внешнюю поверхность (нижнюю и боковую) пучка капилляров нанесено покрытие из металла с низкой проницаемостью для водорода - медное покрытие толщиной 10 мкм. Верхние торцы капилляров и пространства между капиллярами открыты и выведены в коллектор подачи и выпуска водорода. Пучок капилляров и коллектор поместили в герметичный сосуд, на торцевую поверхность пучка положили гранулы сплава Вуда, на гранулы сплава Вуда устанавливался нагреватель. Капилляры заполнялись водородом до давления 700 ати. Затем включался нагреватель, слой гранул из сплава Вуда нагревался до 80°С. Сплав Вуда плавился и герметизировал верхние торцы капилляров и пространства между капиллярами. Нагреватель выключался, сплав Вуда быстро охлаждался, сбрасывалось давление водорода в коллекторе. Исходный вес капилляров составлял 453 мг, после заполнения водородом 507,5 мг. Содержание водорода составляет 12% вес. Время заполнения водородом и всех операций не превышало 5-6 минут.

Таким образом, данная емкость для хранения водорода соответствует высоким требованиям по безопасности заправки и хранения водорода - корпус емкости не находится под высоким давлением, возможность разгерметизации и выхода водорода минимизирована, процессы заправки проходят при низких температурах, а весовое содержание водорода в емкости выше 6%, что по совокупности делает возможным использование указанного изобретения в химическом, транспортном машиностроении и других отраслях промышленности.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Емкость для хранения водорода, состоящая из герметичного корпуса, коллектора подачи и выпуска водорода, нагревателя и наполнителя-аккумулятора водорода, выполненного из пористого материала и размещенного в корпусе, отличающаяся тем, что на часть внешней поверхности наполнителя-аккумулятора водорода, соединенной с коллектором подачи и выпуска водорода, нанесен слой материала с высокой проницаемостью для водорода, или с низкой температурой плавления, или с низкой температурой деструкции, на остальную часть поверхности нанесено водородонепроницаемое покрытие, а нагреватель расположен на уровне вышеуказанного слоя.

2. Емкость по п.1, отличающаяся тем, что слой материала с высокой проницаемостью для водорода выполнен из сплавов палладия или никеля, или полимерных материалов.

3. Емкость по п.1, отличающаяся тем, что слой материала с низкой температурой плавления выполнен из сплава Вуда или сплава Деварда, или сплавов висмута, или свинца, или олова, или полимерных материалов.

4. Емкость по п.1, отличающаяся тем, что слой материала с низкой температурой деструкции выполнен из полимерных материалов или металлоорганических соединений.

5. Емкость по п.1, отличающаяся тем, что пористый материал представляет собой пеноникель или пеноалюминий, или пенополимер, или пеносиликат.

6. Емкость по п.1, отличающаяся тем, что пористый материал представляет собой нано-трубки.

7. Емкость по п.1, отличающаяся тем, что водородонепроницаемое покрытие выполнено из металлов, например, меди или ее сплавов, или керамики, или стекла.

8. Емкость по п.1, отличающаяся тем, что наполнитель-аккумулятор водорода выполнен в виде отдельных герметизированных секций, каждая из которых соединена со своим нагревателем.

9. Емкость для хранения водорода, состоящая из герметичного корпуса, коллектора подачи и выпуска водорода и наполнителя-аккумулятора водорода, размещенного в корпусе и выполненного в виде пучка полых капилляров, снабженного защитным покрытием, при этом торцы капилляров соединены с коллектором подачи и выпуска водорода, отличающаяся тем, что покрытие выполнено на торцевых поверхностях пучка в виде слоя материала с высокой проницаемостью для водорода, или с низкой температурой плавления, или с низкой температурой деструкции, а на уровне вышеуказанного слоя расположен нагреватель.

10. Емкость по п.9, отличающаяся тем, что слой материала с высокой проницаемостью для водорода выполнен из сплавов палладия или никеля, или полимерных материалов.

11. Емкость по п.9, отличающаяся тем, что слой материала с низкой температурой плавления выполнен из сплава Вуда или сплава Деварда, или сплавов висмута, или свинца, или олова, или полимерных материалов.

12. Емкость по п.9, отличающаяся тем, что слой материала с низкой температурой деструкции выполнен из полимерных материалов или металлоорганических соединений.

13. Емкость по п.9, отличающаяся тем, что капилляры выполнены из стекла или углерода, или металла, или полимерных материалов.

14. Емкость по п.9, отличающаяся тем, что наполнитель-аккумулятор водорода выполнен в виде намотанного на оправку пучка капилляров.

15. Емкость по любому из пп.9 и 13, отличающаяся тем, что защитное покрытие выполнено из металла с низкой проницаемостью водорода и нанесено на внешнюю поверхность пучка капилляров, выполненных из стекла или полимера или углерода.

16. Емкость по п.9, отличающаяся тем, что наполнитель-аккумулятор водорода выполнен из капилляров разного диаметра, при этом диаметр внешних капилляров меньше диаметра внутренних капилляров.

17. Емкость по п.9, отличающаяся тем, что капилляры соединены друг с другом.

rnrnrnrnrnrnrnrnrn

18. Емкость по п.9, отличающаяся тем, что наполнитель-аккумулятор водорода выполнен в виде отдельных герметизированных секций, каждая из которых соединена со своим нагревателем.

19. Емкость для хранения водорода, состоящая из герметичного корпуса, коллектора подачи и выпуска водорода и наполнителя-аккумулятора водорода, размещенного в корпусе и выполненного в виде пучка полых капилляров, снабженного защитным покрытием, при этом одни торцы капилляров соединены с коллектором подачи и выпуска водорода, а другие загерметизированы, отличающаяся тем, что покрытие выполнено на торцевой поверхности пучка капилляров, соединенных с коллектором, и выполнено в виде слоя материала с высокой проницаемостью для водорода или с низкой температурой плавления, или с низкой температурой деструкции, а на уровне вышеуказанного слоя расположен нагреватель.

20. Емкость по п.19, отличающаяся тем, что слой материала с высокой проницаемостью для водорода выполнен из сплавов палладия или никеля, или полимерных материалов.

21. Емкость по п.19, отличающаяся тем, что слой материала с низкой температурой плавления выполнен из сплава Вуда или сплава Деварда, или сплавов висмута, или свинца, или олова, или полимерных материалов.

22. Емкость по п.19, отличающаяся тем, что слой материала с низкой температурой деструкции выполнен из полимерных материалов или металлоорганических соединений.

23. Емкость по п.19, отличающаяся тем, что капилляры выполнены из стекла или углерода, или металла, или полимерных материалов.

24. Емкость по п.19, отличающаяся тем, что наполнитель-аккумулятор водорода выполнен в виде намотанного на оправку пучка капилляров.

25. Емкость по любому из пп.19 и 23, отличающаяся тем, что защитное покрытие выполнено из металла с низкой проницаемостью водорода и нанесено на внешнюю поверхность пучка капилляров, выполненных из стекла или полимера или углерода.

26. Емкость по п.19, отличающаяся тем, что наполнитель-аккумулятор водорода выполнен из капилляров разного диаметра, при этом диаметр внешних капилляров меньше диаметра внутренних капилляров.

27. Емкость по п.19, отличающаяся тем, что капилляры соединены друг с другом.

28. Емкость по п.19, отличающаяся тем, что наполнитель-аккумулятор водорода выполнен в виде отдельных герметизированных секций, каждая из которых соединена со своим нагревателем.

Разместил статью: search
Дата публикации:  13-09-2006, 10:59

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Владимир Николаевич

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Емкость для хранения водорода и способ аккумулирования водорода
Ноу-хау разработки, а именно данное изобретение автора относится к области водородной энергетики, аккумулированию и хранению водорода, используемому в химическом, транспортном машиностроении и других отраслях промышленности. Для снижения давления и температуры на стадиях аккумулирования и хранения водорода, повышения массового содержания водорода, уменьшения потерь водорода при хранении и аккумулировании в емкости для хранения водорода, состоящей из герметичного корпуса, технологических...

Емкость для хранения водорода
Ноу-хау разработки, а именно данное изобретение автора относится к области водородной энергетики - аккумулированию и хранению водорода. Емкость для хранения водорода, состоит из герметичного корпуса, технологических патрубков, нагревателя и наполнителя-аккумулятора водорода, размещенного в корпусе. Наполнитель-аккумулятор водорода представляет собой полые микросферы, скрепленные между собой в единую жесткую структуру, сформированную послойно из микросфер разного диаметра. Диаметр микросфер...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: магнит или могнит?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Способ производства жидкого топлива и водорода из биомассы или ископаемого угля с использованием солнечной энергии, микроволн и плазмы

Способ производства жидкого топлива и водорода из биомассы или ископаемого угля с использованием солнечной энергии, микроволн и плазмы Изобретение относится к системе, использующей тепловую энергию солнечного происхождения совместно с микроволнами и плазмами для получения, главным…
читать статью
Устройства и способы получения водорода и кислород
Генератор водорода

Генератор водорода Генератор водорода, который содержит кожух, ряды разделенных промежутками пластин, содержащихся внутри кожуха, и образующих между ними непроницаемые…
читать статью
Устройства и способы получения водорода и кислород
Универсальный генератор водорода

Универсальный генератор водорода Ноу-хау разработки, а именно данное изобретение автора относится к энергетическому оборудованию и может использоваться для получения водорода как в…
читать статью
Устройства и способы получения водорода и кислород
Способ снижения затрат электроэнергии на электролиз посредством гравитации

Способ снижения затрат электроэнергии на электролиз посредством гравитации Изобретение относится к электролизным системам и может быть использовано в электролизных установках. Технический результат состоит в снижении затрат…
читать статью
Устройства и способы получения водорода и кислород
Способ использования вещества мантии земли для получения водорода

Способ использования вещества мантии земли для получения водорода Область использования: получение дешевых и экономичных источников энергии, в частности топлива для двигателей внутреннего сгорания. Способ включает:…
читать статью
Устройства и способы получения водорода и кислород
Способ получения водорода - топлива для двигателя внутреннего сгорания

Способ получения водорода - топлива для двигателя внутреннего сгорания Ноу-хау разработки, а именно данное изобретение автора относится к двигателестроению и может использоваться в топливной аппаратуре двигателей…
читать статью
Устройства и способы получения водорода и кислород
Генератор водорода транспортной энергоустановки

Генератор водорода транспортной энергоустановки Ноу-хау разработки, а именно данное изобретение автора относится к энергетическому оборудованию и может использоваться для получения водорода как в…
читать статью
Устройства и способы получения водорода и кислород
Электролизер для получения водорода и кислорода из воды

Электролизер для получения водорода и кислорода из воды Изобретение относится к устройствам для получения водорода и кислорода электролизом воды. Электролизер включает корпус, размещенные в нем…
читать статью
Устройства и способы получения водорода и кислород
Способ электролиза воды для получения водорода и кислорода из воды

Способ электролиза воды для получения водорода и кислорода из воды Предложен катод для выделения водорода в электролитической ячейке, содержащий металлическую основу и покрытие, состоящее из чистого оксида рутения.…
читать статью
Устройства и способы получения водорода и кислород
Способ изготовления электрода для электрохимических процессов

Способ изготовления электрода для электрохимических процессов Изобретение относится к электрохимическим производствам и может быть использовано для изготовления металлоксидных анодов, применяемых при электролизе…
читать статью
Устройства и способы получения водорода и кислород
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
pi31453_53
Публикаций: 9
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
Patriotjpa
Публикаций: 0
Комментариев: 0
kapriolree
Публикаций: 0
Комментариев: 0
gustavoytd
Публикаций: 0
Комментариев: 0
Mihaelsjp
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru