Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Способ получения энергии и резонансный насос-теплогенератор
Нетрадиционная теплоэнергетика, Теплогенераторы для жидких сред
Способ получения энергии и резонансный насос-теплогенератор Способ и устройство предназначены для получения тепловой энергии, полученной без сгорания органического топлива. В корпусе резонансного насоса-теплогенератора созданы зоны пониженного давления, зоны повышенного давления, зоны нагнетания. Жидкость из системы нагрева поступает в зону повышенного давления, где интенсивно вскипает под действием разрежения. Проходя из зоны пониженного давления через резонирующие диски, поток жидкости и кавитационных пузырьков разделяются на множество струек...
читать полностью


» Нетрадиционная теплоэнергетика, Теплогенераторы для жидких сред
Добавить в избранное
Мне нравится 0


Сегодня читали статью (2)
Пользователи :(0)
Пусто

Гости :(2)
0
Добавить эту страницу в свои закладки на сайте »

Способ получения энергии и резонансный насос-теплогенератор


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2142604

Область деятельности(техники), к которой относится описываемое изобретение

Ноу-хау разработки, а именно данное изобретение автора относится к теплоэнергетике и может быть использовано как в системах отопления и горячего водоснабжения, так и для нагрева жидкости. Известны процессы выделения избыточной энергии при вибрационном воздействии на жидкость, вызывающем кавитацию. При этом коэффициент преобразования энергии может достигать 100% и более вследствие взаимосвязи физической природы явлений кавитации и свойств вещества субатомного и субъядерного уровня.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Например, по патенту Российской Федерации N 2061195 известен способ тепловыделения жидкости, который путем создания в кавитирующей в замкнутом контуре жидкости, газовой подушке и последовательного варьирования ее объема и расхода протекающей жидкости до установления в ней автоколебательного режима, позволяет получить коэффициент преобразования энергии до 1,21. Недостаток известного способа заключается в малом значении коэффициента преобразования энергии.

Известен также способ получения энергии (патент Российской Федерации RU 2054604 C1 (Кладов А.Ф.) 20.02.96), включающий подачу вещества в жидкой фазе в зону обработки и создания в жидкости кавитационных пузырьков, путем создания периодически изменяющегося давления, имеющего постоянную и переменные составляющие, который позволяет получить коэффициент преобразования энергии более 1,21. Недостатком известного способа является неспособность эффективного преобразования энергии при давлениях ниже P1 = 1,2 МПа, а P2 = 2,3 МПа, что приводит к необходимости создания ультразвуковых (более 20 кГц) колебаний и повышенной мощности (не более 51,6 кВт) для привода активатора, где R1 - постоянная составляющая давления, МПа;

P2 - переменная составляющая давления, МПа.

Известно устройство [PCT WO 94/098 94 A.1. (Кладов А.Ф.) 11.05.94], в котором реализован упомянутый выше способ получения энергии, включающий сборный корпус, выполненный из отдельных секций, скрепленных между собой, не менее двух рабочих камер, в которых установлены центробежные колеса с закрепленными на периферии перфорированными кольцами.

Коаксиально роторам в рабочих камерах напротив каждого ротора закреплен статор. Рабочие камеры сообщены между собой посредством диффузоров.

Первая рабочая камера соединена с подводящим патрубком, а последняя рабочая камера с нагнетательным.

rnrnrnrnrnrnrnrnrn

Недостатками известного устройства являются:

- большие осевые нагрузки на подшипники;

- нетехнологичность сборки, так как требуется поэлементная единовременная сборка ротора, деталей корпуса, статора;

- трудность обеспечения взаимной центровки сопрягаемых деталей;

- сложность обеспечения высокой плотности корпуса при колебаниях температуры.

Технической задачей, на решение которой направлены изобретения, являются создание способа получения в более широких пределах мощностей, затрачиваемых на привод, более простое и технологическое устройство для его осуществления, имеющее сниженные осевые нагрузки на подшипники, цельный корпус, цельнолитой ротор.

Поставленная задача решена созданием способа получения энергии, включающего:

а) разделение зоны обработки жидкости на три зоны:

- зоны пониженного давления (разрежения);

- зоны повышенного давления;

- зоны нагнетания.

б) создание в жидкости кавитационных пузырьков.

Новым является то, что упомянутые пузырьки в жидкости создаются путем понижения давления в зоне пониженного давления намного ниже давления насыщенного водяного пара. Как известно, при снижении давления ниже давления насыщенного пара любой жидкости при данной температуре жидкость закипает. Для различных жидкостей соотношение температуры и давления насыщенного пара составляют:

Ртуть - P = 0,008 кг/см2, t = 168,9oC

Аммиак - P = 5,45 кг/см2, t = +6oC

Фреон - 12 - P = 3,817 кг/см2, t = +6oC

Фреон - 12 - P = 0,885 кг/см2, t = +5oC

Пропан - P = 5,561 кг/см2, t = +5oC

Вода имеет самую низкую зависимость давления насыщенного пара и температуры; выраженная в метрах водяного столба, она составляет:

toC: 0; 10; 20; 40; 60; 80; 100.

h м. вод. ст.: 0,06; 0,12; 0,24; 0,75; 2,03; 4,83; 10,33.

В жизни кавитационного пузырька различают две фазы - расширение и схлопывание (конденсацию), которые вместе образуют полный термодинамический цикл. Каждый кавитационный пузырек, формируясь из ядра, растет до конечных размеров, продвигаясь вместе с жидкостью по зоне пониженного давления от вентиля до резонансного диска. Конечный размер кавитационного пузырька зависит от величины разрежения в зоне пониженного давления, температуры, скорости протекания обрабатываемой жидкости и размеров всасывающих отверстий разделительных дисков.

Вторая фаза жизни кавитационного пузырька - схлопывание (конденсация) происходит в зоне повышенного давления, куда он перемещается вместе с жидкостью.

Так как процесс схлопывания (конденсации) кавитационного пузырька происходит практически мгновенно, частицы жидкости, окружающей пузырек, перемещаются к его центру с большой скоростью. В результате кинетическая энергия соударяющихся частиц вызывает в момент смыкания пузырьков местные гидравлические микроудары, сопровождающиеся высокими забросами давления и температуры в центрах схлопнувшихся пузырьков, которые могут достигать 1000 - 1500oC и 1500 - 2000 кг/см2.

а) Зона повышенного давления заполняется обрабатываемой жидкостью, которая служит для конденсации кавитационных пузырьков, приведения колебаний жидкости и контактных деталей в резонансный режим, преобразования энергии от различных источников в тепловую и защиты стенок корпуса от вредного воздействия кумулятивных струек, образующихся при несимметричном смыкании деформированных кавитационных пузырьков.

rnrnrnrnrnrnrnrnrn

б) Разделение потока жидкости и кавитационных пузырьков на множество струек различного сечения, отсечение от струек порций жидкости и кавитационных пузырьков и заброс их в зону повышенного давления. Приведение суммарных колебаний жидкости в зоне повышенного давления, вызванных кавитацией, ударами отсеченных от струек порциями жидкости и кавитационных пузырьков, ударами концов лопастей ротора, путем изменения разрежения и расходов протекающей жидкости в резонансный режим.

Изобретение соответствует условию патентоспособности "новизна", поскольку по имевшимся данным из общедоступных источников информации неизвестно применение подобных устройств насосов - теплогенераторов.

Соответствует оно и условию патентоспособности "изобретательский уровень", поскольку указанная совокупность существенных признаков устройства и средств воздействия на жидкость для ее нагрева обеспечивает новый технический эффект.

Источником тепловой энергии служит:
а) энергия, выделяющаяся в зоне повышенного давления, в результате актов спорадического термоядерного синтеза ядер в плазме схлопывающихся кавитационных полостей, преобразуется в жидкости в тепловую с энерговкладом отдельных актов объединения ядер водорода - 0,42 МэВ, дейтерия и водорода - 5,6 МэВ и т.п.

б) энергия от резонансных колебаний жидкости, имеющих положительные и отрицательные полуволны давлений, передаваемая жидкости в виде тепловой, может быть определена по формуле:

В случае развития суперкавитации, когда кавитационные пузырьки вырастают до больших размеров и не успевают схлопнуться в зоне повышенного давления, а также увлеченные вытесняемой жидкостью нормальные пузырьки продолжают отдавать тепловую энергию жидкости путем массообмена пара и жидкости в зоне нагнетания.

Кавитация сопровождается и другими физическими явлениями. Так, в момент схлопывания пузырьков наблюдается слабое свечение, вызванное нагревом растворенного в жидкости газа. Интенсивность света зависит от количества газа в пузырьке.

резонансный насос-теплогенераторрезонансный насос-теплогенератор

Предлагаемый способ получения энергии может быть осуществлен в резонансном насосе-теплогенераторе (фиг. 1, 2, 3, 4, 5), включающем корпус 8 (фиг. 1), всасывающий 9, нагнетательный 16 патрубки, ротор 7, выполненный в виде одноступенчатой с двухсторонним подходом потока жидкости турбины, лопатки которой скреплены тремя витыми обручами, имеющие между обручами утолщение к периферии, угол установки  = 80,o с перегородкой посредине, разделяющей его на две равные половины. С торцов к ротору примыкают резонансные диски 12. Резонансные диски 12 (фиг. 3) имеют центральное отверстие 10 для приводного вала 21, всасывающие отверстия 18 и нагнетательное отверстие 17. Резонансные диски выполнены зеркально. С противоположных сторон от торцов ротора к резонансным дискам примыкают корпуса камер пониженного давления и камер нагнетания. Всасывающие отверстия располагаются напротив камер пониженного давления, а нагнетательные - напротив камер нагнетаний. К корпусам камер пониженного давления и нагнетания крепятся вдоль приводного вала 10 корпуса сальников 5, корпуса подшипников 4 с крышками 3, а к фланцам в верхней части тройные патрубки: всасывающий 9 и нагнетательный 16. К верхним отверстиям тройных патрубков 9 и 16 крепятся запорные вентили 22 и 23.

Способ получения энергии и резонансный насос-теплогенераторСпособ получения энергии и резонансный насос-теплогенератор

Согласно изобретательскому замыслу корпус насоса-теплогенератора жестко связан с камерами пониженного давления и камер нагнетания, к которым со стороны роторов прикреплены резонансные диски. Зазоры между ротором и резонансными дисками находятся в пределах 0,2 - 0,4 мм. От осевого смещения ротор удерживается конусными втулками самоцентрирующихся подшипников, стягивающих при помощи гаек приводный вал 10.

Угол установки лопаток ротора, намного превышающий углы лопаток центробежных насосов, предназначен для резкого, с ударом по струе отсечения частичек смеси жидкости и кавитационных пузырьков, вытекающих из всасывающих отверстий резонансных дисков. Обручи, отлитые совместно с лопатками, предохраняют их от поломок, увеличивая жесткость и прочность ротора. Утолщения на концах лопаток кроме увеличения их механической прочности служат своеобразными "кавитаторами", дополнительно образующими, в процессе воздействия на жидкость в зоне повышенного давления, кавитационные пузырьки. Скорость движения концов лопаток ротора в зоне повышенного давления не должна быть меньше 26 м/сек.

Материал для изготовления ротора, разделительных дисков и корпуса - нержавеющая сталь, приводной вал - конструкционная сталь, а остальные детали - чугунное литье.

Работает описанное устройство для осуществления заявляемого способа получения энергии резонансный насос-теплогенератор следующим образом

В процессе вращения ротор засасывает жидкость через вентиль 22 из системы нагрева. Всасываемая жидкость разделяется тройным патрубком 16 на два равных потока и заполняет камеры, входящие в состав зоны пониженного давления. Вентилем 22 регулируется величина разрежения в зоне пониженного давления, включающей тройной патрубок 16 и две камеры пониженного давления 6. Величина разрежения зависит от температуры нагреваемой жидкости и находится в пределах (-0,8-) - (-0,3) кг/см2. При понижении величины разрежения в указанных пределах жидкость интенсивно закипает, образуя кавитационные пузырьки.

rnrnrnrnrnrnrnrnrn

Способ получения энергии и резонансный насос-теплогенератор

Поток жидкости и кавитационных пузырьков, проходя через отверстия 18 резонансных дисков, разделяется на множество струек, отличающихся между собой размерами и местом расположения.

Разрежением, возникающим за лопатками ротора, смесь жидкости и кавитационных пузырьков засасывается по всасывающим отверстиям резонирующих дисков. При совмещении торцов лопаток ротора с отверстиями в них происходят гидравлические удары, вызывающие колебания резонирующих дисков в осевом направлении.

Жидкость, вытесняемая из зоны повышенного давления и прерываемая лопатками ротора, также воздействует на резонирующие диски ударами, направленными в осевом направлении. Зеркальное расположение всасывающих и нагнетательных отверстий резонирующих дисков, количество отверстий и место их расположения позволяет организовать встречные колебания жидкости в зоне повышенного давления.

Каждая лопасть ротора, проходя мимо отверстий 18, последовательно отсекает от струек частицы, которые под действием центробежной силы отбрасываются в зону повышенного давления. Зона повышенного давления, расположенная между корпусом 8 и ротором 7, заполняется отброшенными частицами жидкости. Жидкость после повышения давления, в зоне повышенного давления, достаточного для преодоления сопротивления вращающихся лопастей ротора, выходящих периферийными частями за кромки выпускных отверстий 17 резонансных дисков, начинает вытесняться через нагнетательные отверстия в камеры нагнетания. Из зоны нагнетания, включающей камеры нагнетания и тройной патрубок 9, нагретая жидкость через вентиль 23 направляется по назначению.

Способ получения энергии и резонансный насос-теплогенератор

Регулируя вентилем 22 величину разрежения и расход протекающей жидкости, легко установить резонансный режим работы насоса-теплогенератора при любой температуре жидкости от +2 до +85oC. Резонансный режим работы насоса-теплогенератора характеризуется увеличением скорости нагрева жидкости и снижением потребляемой мощности.

В конкретных примерах осуществления заявленного способа получения энергии и резонансный насос-теплогенератор описаны опыты, выполненные на установках различной мощности с закрытыми цикламиВ конкретных примерах осуществления заявленного способа получения энергии и резонансный насос-теплогенератор описаны опыты, выполненные на установках различной мощности с закрытыми циклами

В конкретных примерах осуществления заявленного способа получения энергии и резонансный насос-теплогенератор описаны опыты, выполненные на установках различной мощности с закрытыми циклами (фиг. 5). Были достигнуты следующие технические результаты.

Измерение температуры жидкости производим термометром, а количество выделившейся тепловой энергии определяем по формуле:

Способ получения энергии и резонансный насос-теплогенератор

Результаты в таблице 2.

Способ получения энергии и резонансный насос-теплогенератор

Измерение температуры жидкости производим термометром, а количество выделившейся тепловой энергииИзмерение температуры жидкости производим термометром, а количество выделившейся тепловой энергии

Из таблиц 1 и 2 видно, что наиболее благоприятная зона работы резонансного насоса-теплогенератора располагается в температурном интервале от +50oC до +90oC, а отношение выделенной мощности к затраченной K = 2 - 3,52 раза. Особенностью работы резонансного насоса-теплогенератора является снижение потребляемой мощности на приводе и рост мощности тепловыделения с ростом температуры нагреваемой жидкости, что является следствием повышения давления водяных паров и снижения энергозатрат на образование кавитационных пузырьков.

Иллюстрация: фиг. 1, 2, 3, 4, 5.

На фиг. 1. изображен продольный разрез резонансного насоса-теплогенератора. В корпусе 8 расположен ротор 7 на валу 10. С торцов ротора расположены резонансные диски 12, которые крепятся к всасывающе-нагнетательным камерам 6, с противоположной стороны к ним крепятся корпуса 5 с уплотнительными сальниками 11. Вал 10 опирается через подшипники 2 на корпуса подшипников 4 с крышками 3. Уплотнительные сальники регулируются крышками 1. Для предотвращения осевого смещения ротора служат втулки 13 и контргайки 14. Тройной патрубок 9 служит для соединения нагнетательных камер с системой нагрева. Шпонка 15 служит для соединения вала 10 с соединительной муфтой электродвигателя.

На фиг. 2. изображен поперечный разрез резонансного насоса-теплогенератора. Внутри корпуса 8 расположен ротор 7, через лопатки которого видно нагнетательное отверстие 17 и всасывающее отверстие 18. Вентиль 22 крепится на тройной патрубок 16, соединяющий всасывающие камеры. Вентиль 23 крепится к тройному патрубку 9, соединяющему нагнетательные камеры.

На фиг. 3. изображен резонирующий диск, оснащенный нагнетательным отверстием 17, всасывающими отверстиями 18, отверстием для приводного вала 21 и крепежными отверстиями 19.

На фиг. 4 изображен ротор 7, вид с торца и разрез, вид А. Торцевые части лопаток ротора имеют форму обычных лопастей насоса, а части, расположенные между литыми обручами 20, имеют на периферийной части утолщения.

На фиг. 5. изображена схема подключения насоса-теплогенератора к системе нагрева жидкости, включающая: емкость 24, соединительные трубопроводы или шланги 25, запорные вентили 22 и 23, насос-теплогенератор 22, эл. двигатель 28.

Использование предлагаемого способа получения энергии, осуществляемого в резонансном насосе-теплогенераторе, позволяет получать тепловую энергию, образующуюся в результате кавитации и резонансных колебаний, в промышленном масштабе.

Указанный способ можно применить для отопления и горячего водоснабжения коттеджей, гражданских и промышленных объектов, а также для нагрева жидкости в технологических процессах.

Простота рабочего процесса насоса-теплогенератора позволяет использовать для вращения приводного вала не только эл. двигатели, но и другие виды двигателей. Применение ветряных двигателей позволит обеспечивать тепловой энергией объекты, удаленные от всех энергосетей. Установив вместо эл. двигателя, например, дизельный двигатель, объединив систему охлаждения через терморегуляторы с системой нагрева и пропустив выхлопные газы через теплообменник, можно не только резко повысить КПД двигателя до 80 - 85% но и применить подобный агрегат для теплоснабжения отдельных объектов, а также при проведении аварийных работ на теплотрассах, в зимнее время обеспечивать теплом отключенные дома.

Более перспективным представляется преобразование по схеме эл. двигатель - насос-теплогенератор - эл. генератор с общим КПД системы более 100%, но для этого потребуется увеличить энерговклад от синтеза, что повлечет за собой увеличение концентрации дейтерия и трития обрабатываемой жидкости.

Использование предлагаемого способа получения энергии, осуществляемого в резонансном насосе-теплогенераторе, экономически выгодно потому, что нет необходимости строить склады топлива, магистральные трубопроводы теплотрасс, количество производимой тепловой энергии превышает затрачиваемую.

Окружающая среда не загрязняется потерями топлива при транспортировке и продуктами его сгорания в местах выработки тепловой энергии.

Предлагаемый способ получения энергии позволяет экономно использовать электрическую энергию для нагрева жидкости, по сравнению с традиционными нагревательными приборами.

Список использованной литературы

1. Т.М. Башта. Машиностроительная гидравлика. - М.: Машиностроение, 1971 г., стр. 44 - 49, 118.

2. Теплотехнический справочник / Под ред. С.Г. Герасимова. - М.: Госэнергоиздат, 1957 г., стр. 218 - 236, 251.

3. Машиностроение. Энциклопедический справочник. - М.: 1948 г., т. 1, стр. 471, 522, 526, т. 12, стр. 256, 350.

4. Справочник строителя "Погрузочно-разгрузочные работы". Ред. М.П. Ряузова. - М., 1988 г., стр. 321.

5. А. К. Кикоин, С. Я. Шамаш, Э.Е. Эвенчик. Механические колебания и волны. - М.: Просвещение, 1986 г., стр. 17 - 20.

6. Патент России N 2054604, кл. 6 F 24 J 3/00.

7. Патент России N 2061195, кл. 6 F 24 J 3/00.

Формула изобретения

1. Способ получения энергии, включающий создание в жидкости кавитационных пузырьков, отличающийся тем, что кавитационные пузырьки жидкости создают путем понижения давления ниже давления водяных паров, перемещают смесь жидкости с кавитационными пузырьками из зоны пониженного в зону повышенного давления, разделяя ее на множество струек различного сечения, отсекают от струек порции смеси и забрасывают их в зону повышенного давления и, варьируя разрежения в зоне пониженного давления и расход протекающей жидкости, создают в ней резонансный режим.

2. Резонансный насос-теплогенератор, имеющий корпус с патрубками для всасывания нагреваемой и нагнетания нагретой жидкости, внутри которого размещен ротор, отличающийся тем, что корпус выполнен целым, а ротор выполнен в виде одноступенчатой с двусторонним подходом потока турбины, лопатки которой имеют утолщение к периферии и угол установки  = 80o, скрепленные тремя литыми, заодно с лопатками, ободами с перегородкой, разделяющей его на две равные половины, расположенный между резонирующими дисками, имеющими всасывающие и нагнетательные отверстия, прикрепленные к корпусам камер пониженного давления и нагнетания, периферийные части лопастей более удалены в радиальном направлении, чем кромки нагнетательных отверстий.

rnrnrnrnrnrnrnrnrn

Имя изобретателя: Петраков Александр Дмитриевич
Имя патентообладателя: Петраков Александр Дмитриевич
Почтовый адрес для переписки: 658224, Алтайский край, Рубцовск, пр.Ленина, 64, кв.116, Петракову А.Д.
Дата начала отсчета действия патента: 1998.01.26

Разместил статью: Admin
Дата публикации:  13-05-2005, 11:26

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Нагреватель жидкого теплоносителя
Назначение: в теплоснабжении жилищно-коммунального хозяйства в качестве источника тепла в системах отопления, а также в других областях промышленности для нагрева жидкости. Сущность изобретения: для повышения температуры теплоносителя в камере 1 с жидкостью включают в работу ротор 4, несущий диски 6. Последние вращаясь, захватывают жидкость и перемещают ее в зазорах между ними и неподвижными дисками 7....

Роторный кавитационный насос-теплогенератор
Ноу-хау разработки, а именно данное изобретение автора относится к конструкциям насосов-теплогенераторов, которые могут быть использованы преимущественно в локальных системах теплоснабжения промышленных зданий, цехов, общественных и жилых помещений, а также для нагрева жидкостей в различных технологических системах....








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: 55+55-10/2=?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Вихревой теплогенератор гидросистемы

Вихревой теплогенератор гидросистемы Ноу-хау разработки, а именно данное изобретение автора относится преимущественно к теплотехнике, в частности к нагревательным устройствам, работающим…
читать статью
Теплогенераторы для жидких сред
Водогрейный котел

Водогрейный котел Котел предназначен для нагрева воды и может быть использован для горячего водоснабжения коттеджей, теплиц, жилых поселков. Котел содержит корпус с…
читать статью
Теплогенераторы для жидких сред
Энергетическая установка для снабжения электрической и тепловой энергией хозяйственных и социальных объектов

Энергетическая установка для снабжения электрической и тепловой энергией хозяйственных и социальных объектов Изобретение может быть использовано в машиностроении, в частности в энергетических установках, вырабатывающих электрическую и тепловую энергии.…
читать статью
Электростанции и электрогенераторы, Теплогенераторы для жидких сред
Способ обработки текучих сред

Способ обработки текучих сред Изобретение может быть использовано для термической стерилизации текучих сред, а также при нагреве оборотной или свежей воды в системах водяного…
читать статью
Теплогенераторы для жидких сред
Тепловой генератор

Тепловой генератор Изобретение касается теплового генератора (1). Тепловой генератор содержит как минимум один термический модуль (10), который содержит N смежных…
читать статью
Нетрадиционная теплоэнергетика, Теплогенераторы для жидких сред
Способ работы газотурбинной установки

Способ работы газотурбинной установки Изобретение относится к газотурбинным установкам и может быть использовано при создании наземных агрегатов для получения электричества и тепла с…
читать статью
Электростанции и электрогенераторы, Теплогенераторы для жидких сред
Теплогенератор для нагрева жидкостей

Теплогенератор для нагрева жидкостей Ноу-хау разработки, а именно данное изобретение автора относится к области теплоэнергетики. Теплогенератор включает средство для подачи жидкости,…
читать статью
Нетрадиционная теплоэнергетика, Теплогенераторы для жидких сред
Теплогенератор-утилизатор

Теплогенератор-утилизатор Теплогенератор-утилизатор предназначен для использования в деревообрабатывающей отрасли при сушке пиломатериалов, а также в теплоэнергетике для…
читать статью
Теплогенераторы для жидких сред
Ветровой теплогенератор

Ветровой теплогенератор Изобретение относится к ветроэнергетике и может быть использовано для приготовления горячей воды и снабжения ею различных потребителей. Ветровой…
читать статью
Нетрадиционная теплоэнергетика, Солнечные, ветровые, геотермальные теплогенераторы, Теплогенераторы для жидких сред
Водогрейный жаротрубный котел

Водогрейный жаротрубный котел Изобретение относится к теплотехнике и может быть использовано при производстве водогрейных котлов для отопления и горячего водоснабжения. Цель…
читать статью
Теплогенераторы для жидких сред
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
miha111
Публикаций: 1481
Комментариев: 0
vik-sul
Публикаций: 16
Комментариев: 1
pi31453_53
Публикаций: 9
Комментариев: 0
vikremlev
Публикаций: 1
Комментариев: 0
АНАТОЛИЙ
Публикаций: 0
Комментариев: 0
Patriothhv
Публикаций: 0
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru