Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Способ получения энергии и резонансный насос-теплогенератор
Нетрадиционная теплоэнергетика, Теплогенераторы для жидких сред
Способ получения энергии и резонансный насос-теплогенератор Способ и устройство предназначены для получения тепловой энергии, полученной без сгорания органического топлива. В корпусе резонансного насоса-теплогенератора созданы зоны пониженного давления, зоны повышенного давления, зоны нагнетания. Жидкость из системы нагрева поступает в зону повышенного давления, где интенсивно вскипает под действием разрежения. Проходя из зоны пониженного давления через резонирующие диски, поток жидкости и кавитационных пузырьков разделяются на множество струек...
читать полностью


» Нетрадиционная теплоэнергетика, Теплогенераторы для жидких сред
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
0
Добавить эту страницу в свои закладки на сайте »

Способ получения энергии


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2054604

Имя изобретателя: Кладов Анатолий Федорович 
Имя патентообладателя: Кладов Анатолий Федорович
Адрес для переписки: 
Дата начала действия патента: 1993.07.02 

Назначение: в энергетике, в частности в системе обогрева. Сущность изобретения: вещество, находящееся в жидкой фазе, подается в зону обработки, где на него воздействуют постоянным и переменным давлениями, которые приводят к образованию кавитационных пузырьков. Постоянное давление P1 и переменное давление P2 выбирают из следующих соотношений: P1=(0,3 - 0,7) (P2 + P3); P2+P3-P1=(1-10), где P3 и - давление насыщенных паров и прочность на разрыв соответственно обрабатывающего вещества при температуре подачи его в зону обработки (МПа).

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Ноу-хау разработки, а именно данное изобретение автора относится к энергетике, в частности к энергетике сильных взаимодействий элементарных частиц.

В настоящее время широко известно множество способов получения энергии, например способ получения тепловой энергии излучения солнца, кинетической энергии ветра, воды, тепловой энергии, выделяющейся при горении органического топлива (угля, нефти, газа), тепловой энергии, выделяющейся при делении тяжелых ядер химических элементов, энергии, выделяющейся при слиянии легких ядер химических элементов, энергии, выделяющейся при слиянии вещества и антивещества.

Однако интенсивность излучения энергии солнца в оптическом диапазоне составляет всего несколько вольт на квадратный метр поверхности. Поэтому требуется огромная площадь для получения энергии солнечного излучения в промышенном масштабе.

rnrnrnrnrnrnrnrnrn

Энергия ветра также характеризуется низкой интенсивностью несмотря на то, что она на два-три порядка превышает интенсивность солнечного излучения.

Концентарция энергии движения воды на два-три порядка првышает концентрацию энергии ветра. Эта величина, составляющая примерно один мегавольт на квадратный метр, является приемлемой для промышленного получения энергии движущихся масс воды, что подтверждается развитием гидроэнергетики. Отрицательными факторами в данном случае являются необходимость создания водохранилищ и затопление больших площадей земной поверхности, большие капитальные затраты на строительство объектов гидроэнергетики, ограниченность ее ресурсов.

Энергия, выделяющаяся при горении органического топлива (угля, нефти, газа), является в настоящее время основным видом энергии, используемой в промышленном масштабе. Отрицательными факторами являются загрязнения окружающей среды при добыче и транспортировке топлива, продуктами сгорания топлива и теплом, при этом КПД тепловых станций не превышает 40% Под шахты, разрезы, золоотвалы, терриконы, теплостанции, охладительные водоемы, линии электропередач и другие сооружения, входящие в топливно-энергетический комплекс, отводятся огромные площади, что является следствием недостаточной концентрации энергии.

Широко известен способ получения энергии на тепловых электрических станциях. Этот способ заключается в сжигании органического топлива в топке парового котла, где химическая энергия топлива превращается в тепловую энергию водяного пара.

Однако для реализации указанного способа требуется большой расход энергии на добычу органического топлива, на его транспортировку и сжигание. Кроме того, сжигание топлива приводит к загрязнению окружающей среды. При этом большое количество вещества на стадии сжигания выбрасывается в атмосферу и гидросферу в виде газообразных продуктов сгорания. Из всей химической энергии, заключенной в органическом топливе, только около 30% доходит до потребителя в виде электрической энергии. Остальная часть рассеивается в окружающей среде, что снижает КПД тепловых электрических станций и нарушает экологическое равновесие окружающей среды.

Широко известен способ получения энергии на атомных электрических станциях, заключающийся в том, что в активную зону атомного реактора подают воду, где ее нагревают, используя ядерное топливо. Нагретую воду выводят из зоны обработки для последующего использования по назначению.

Однако зараты на добычу и подготовку ядерного топлива для атомного реактора высоки, что отрицательно сказывается на себестоимости получаемой энергии. Кроме того, ядерное топливо не может быть полностью использовано в атомном реакторе, что значительно снижает КПД последнего. При этом топливо атомных электрических станций используется приблизительно в тридцать раз хуже, чем тепловых электрических станций.

Потенциально развитие атомной энергетики несет в себе серьезные проблемы, связанные с охраной окружающей среды. Аварии, произошедшие на ряде атомных электрических станциях, убедительно свидетельствуют об этом.

Известен способ получения энергии, который по совокуности существенных признаков является наиболее близким к изобретению. Этот способ заключается в том, что в зону обработки подают жидкий литий, который подвергают воздействию периодических акустических сил для создания в нем кавитационных пузырьков, в результате чего происходит реакция термоядерного синтеза.

В основу изобретения поставлена задача создать способ получения энергии, который позволил бы исключить затраты на добычу, подготовку и транспортировку топлива, а также позволил бы использовать в качестве рабочей среды любое вещество, находящееся в жидком состоянии.

rnrnrnrnrnrnrnrnrn

Эта задача решена созданием способа получения энергии, включающего подачу вещества в жидкой фазе в зону обработки и создание в веществе кавитационных пузырьков, при этом согласно изобретению кавитационные пузырьки в веществе создают путем создания периодически изменяющегося давления, имеющего постоянную и переменную составляющие, причем указанные составляющие выбирают из следующих соотношений:
Р1 от 0,3 до 0,7 (Р2 + Р3):
Р2 + Р3 Р1 от 1 до 10 , где Р1 постоянная составляющая давления (МПа);
Р2 переменная составляющая давления (МПа);
Р3 давление насыщенных паров обрабатываемого вещества при температуре подачи его в зону обработки (МПа);
прочность на разрыв обрабатываемого вещества при температуре подачи его в зону обработки (МПа).

При соблюдении указанных условий одновременного воздействия переменного и статического давлений на вещество в жидкой фазе в жидкости образуются кавитационные пузырьки в тот момент, когда сумма двух величин: амплитуды переменного давления и давления насыщенных паров вещества при данной температуре, превысит сумму двух величин: статического давления и прочности жидкости на разрыв при данной температуре. Момент этот по времени совпадает с моментом действия отрицательной полуволны переменного давления.

Во время действия на жидкость положительной полуволны переменного давления на кавитационные пузырьки действует сумма двух давлений: амплитуды переменного давления и статического давления, которая стремится сжать пузырьки, т. е. захлопнуть их. В момент захлопывания пузырьков их стенки под действием разности давлений, действующих на кавитационные пузырьки, ускоряются, приобретают кинетическую энергию и сталкиваются в центре. Величина приобретенной кинетической энергии оказывается достаточной для разрыва связи между нуклонами, преодоления сил отталкивания ядер и осуществления взаимодействия между элементарными частицами, содержащимися в ядрах обрабатыавемого вещества (нейтроны, протоны). В результате в локальной области вещества в момент исчезновения кавитационного пузырька (его захлопывания) происходит ядерные реакции с выделением большого количества энергии. Энергия, выделяющаяся в зоне обработки, преобразуется в жидкости в тепло. Это тепло непрерывно отводят из зоны обработки в виде нагретой жидкости и используют по необходимости, а охлажденную жидкость возвращают в зону обработки.

При необходимости изменения энерговыделения изменяют переменное давление и/или статическое давление в указанных пределах. При этом должно соблюдаться указанное соотношение переменного и статического давления, так как при его нарушении в случае увеличения переменного давления выше указанного или уменьшения cтатичеcкого давления ниже указанного в жидкости образуются кавитационные пузырьки больших размеров, которые не успевают захлопнуться, в результате чего прекращается энерговыделение. В случае увеличения статического давления выше указанного или уменьшения переменного давления ниже указанного кавитационные пузырьки в жидкости не могут образоваться и, следовательно, не происходит процесс энерговыделения, так как в этом случае в обрабатываемой жидкости растягивающие напряжения меньше предела прочности жидкости на разрыв.

Предлагаемый способ получения энергии может быть осуществлен в известном ультразвуковм активаторе (заявка РСТ/RU92/00195).

схематично изображен ультразвуковой активатро, в котором может быть реализован предлагаемый способ получения энергии схемы экспериментальной установки для осуществления предлагаемого способа получения энергии
   
схемы экспериментальной установки для осуществления предлагаемого способа получения энергии графическая зависимость величины выделяемой энергии от величины переменного и статического давлений
   
графическая зависимость величины выделяемой энергии от величины переменного и статического давлений
   
   
   
   

На фиг.1 схематично изображен ультразвуковой активатро, в котором может быть реализован предлагаемый способ получения энергии; на фиг.2 и 3 представлены схемы экспериментальной установки для осуществления предлагаемого способа получения энергии; на фиг.4 и 5 показана графическая зависимость величины выделяемой энергии от величины переменного и статического давлений; на фиг.6 и 7 графическая зависимость +-излучения от состава обрабатываемого вещества при осуществлении предлагаемого способа; на фиг.8 и 9 графическая зависимость излучения нейтронов от режима работы установки, изображенной на фиг.3, и от величины расстояния между детектором нейтронов и ультразвуковым активатором при осуществлении предлагаемого способа.

Обрабатываемую жидкость, например воду, подают в ультразвуковой активатор, схематично изображенный на фиг.1. Ультразвуковой активатор содержит две или более соединенные последовательно рабочих камеры 1 (в данном примере их четыре), в каждой из которых установлены рабочие колеса 2 центробежного насоса с закрепленными на периферии роторами 3 в виде перфорированных колец. Коаксиально роторам 3 в корпусах 4 рабочих камер 1 напротив каждого ротора 3 закреплен статор 5, выполненный в виде перфорированного кольца. Рабочие камеры 1 сообщены между собой посредством диффузоров 6. Последняя рабочая камера 1 соединена с первой камерой 1 циркуляционным контуром 7.

Ультразвуковой активатор работает следующим образом.

В процессе вращения рабочее колесо 2 центробежного насоса сообщает обрабатываемой жидкости кинетическую энергию, которая частично преобразуется в статическое давление (в диффузорах 6), а частично в переменное давление (при прохождении перфораций ротора 3 и статора 5).

В зависимости от выбранной жидкости, ее температуры и расчетных величин статического и переменного давлений, удовлетворяющих указанной выше зависимости, устанавливают и поддерживают конструктивные и технологические параметры ультразвукового активатора (см. заявку РСТ/RU 92/00195).

В течение действия на жидкость полупериода отрицательной полуволны переменного давления в жидкости, находящейся в зоне обработки, образуются кавитационные пузырьки. В течение действия на жидкость следующего полупериода положительной полуволны переменного давления кавитационные пузырьки сжимаются. К концу этого полупериода пузырьки запасают кинематическую энергию, определяемую разностью давлений, действующих на пузырьки снаружи и изнутри. Снаружи на пузырьки действует сумма переменного и статического давлений. Внутри пузырьков действует давление насыщенных паров жидкости. Кроме того, на движение пузырьков оказыают влияние и другие силы, определяемые физико-химическими свойствами жидкости и абсолютными значениями заяляемых параметров.

В момент исчезновения пузырька (в момент его захлопывания) кинетическая энергия преобразуется в энергию столкновения элементарных частиц. Энергия, выделяющаяся при захлопывании пузырька, на несколько порядков превышает энергию связи элементарных частиц (нуклонов) в ядре. В результате столкновения ядер в условиях заявляемого способа происходит взаимодействие между элементарными частицами составляющими ядер. Энергия, выделяющаяся в управляемых описанным способом реакциях между элементарными частицами, преобразуется в тепловую энергию в жидкости, и ее отводят из зоны обработки с потоком жидкости.

В конкретных примерах осуществления заявленного способа описаны опыты, вывполненные на экспериментальных установках с открытым и закрытым циклами (фиг. 2 и 3). Установка, изображенная на фиг.2, содержит ультразвуковой активатор 8, описание которого дано выше, электродвигатель 9 для привода активатора, ваттметр 10 для измерения потребляемой мощности, прибор 11 для измерения температуры обрабатываемй жидкости на входе и выходе, радиометр 12 для измерения потоков - и -излучений с детектором 13 излучений, нейтронный радиометр 14 для измерения нейтронного потока с детектором 15 нейтронов, манометр 16 для измерения статического давления, прибор 17 для измерения переменного давления, прибор 18 для измерения расхода жидкости и прибор 19 для измерения спектра частот переменного давления. На трубопроводе, выводящем жидкость из установки, установлен вентиль 20. Между трубопроводами, выводящим и подводящим жидкость к установке, установлен вентиль 21.

Установка работает следующим образом.

Жидкость, например водопроводную воду, по трубопроводам подают на вход установки. Вентилем 20 устанавливают величину потока воды, проходящего через ультразвуковой активатор 8, где поддерживают указанное выше расчетное соотношение переменного и статического давлений. Для изменения статического и переменного давлений в указанных пределах используют вентиль 21. Установив необходимый режим работы установки, дают выдержку в течение 10-15 мин для достижения стабильной работы на заданном режиме и производят необходимые измерения. Потребляемую мощность (N1) измеряют ваттметром 10. Мощность (N2) выделения тепла определяют по произведению двух измеряемых величин: разности ( t) температуры на входе и выходе активатора 8, измеряемой с помощью прибора 11 и расхода (G) жидкости, проходящей через активатор 8, измеряемого посредством прибора 18, и константы теплоемкости (с) обрабатываемой жидкости:



Приборы 16 и 17 для измерения давлений используют для контроля режима работы установки. Спектр частот переменного давления измеряют спектрометром 19.

rnrnrnrnrnrnrnrnrn

Используя радиометры 12 и 14 с их детекторами 13 и 15, измеряют потоки ионизирующих излучений.

Проведя все вышеперечисленные измерения, можно сделать вывод о том, что потребляемая мощнсть для осуществления предлагаемого способа в среднем в два-три раза меньше, чем выделяемая в результате осуществления предлагаемого способа тепловая мощность. При этом ионизирующие излучения, выделяющиеся в процессе осуществления предлагаемого способа, не превышают естественного фона.

Для подтверждения протекания при осуществлении предлагаемого способа ядерных реакций в кавитационных пузырьках обрабатываемой жидкости и образования -, нейтронного излучений используют установку, изображенную на фиг. 3. Эта установка выполнена аналогично описанной выше и изображенной на фиг.2 и отличается от последней наличием емкости 22 для накопления указанных излучений до величины, которую можно измерить имеющиися приборами. Жидкость в данном случае циркулирует по замкнутому контуру: ультразвуковой активатор 8 емкость 22 столько времени, сколько требуется для накопления уровня излучений до величины, которую можно измерить.

Для более наглядного подтверждения протекания в кавитационных пузырьках обрабатываемой жидкости ядерных реакций были использованы добавки стабильных изотопов (кислород, азот, углерод, натрий), которые в результате ядерных реакций, происходящих в активаторе 8, превращаются в нестабильные изотопы, что было зафиксировано с помощью радиометров 12 и 14.

Таким образом, при осуществлении предлагаемого способа появляется возможность в промышленном масштабе получать энергию сильного взаимодействия элементарных частиц.

П р и м е р 1. Получают энергию сильного взаимодействия элементарных частиц, образующуюся в водопроводной воде при температуре 20оС. Эта вода при указанной температуре имеет прочность на разрыв примерно 0,35 МПа. Давление (Рз) насыщенных паров при указанной температуре примерно равно нулю.

По зависимости

Р1 0,3 (Р2 + Р3);

Р2 + Р3 Р1 , решая систему этих уравнений, находят необходимые для осуществления предлагаемого способа статическое давление (Р1) и переменное давление (Р2):

Р1 0,3 Р2;

Р2 0,3 Р2 ;



Водопроводную воду при температуре 20оС подают в ультразвуковой активатор, изображенный на фиг.1, где путем воздействия на вентили 20, 21, изображенные на фиг.2, с помощью измерительных приборов 16, 17 и 19 устанавливают определенные выше переменное и статическое давления.

При прохождении водопроводной воды через ультразвуковой активатор вода нагревается в результате сильного взаимодействия элементарных частиц. Hагретую воду выводят из активатора и направляют по трубопроводу потребителю тепловой энергии. Передав потребителю тепловую энергию, охлажденную воду либо сбрасывают в канализацию, либо возвращают в активатор для повторного использования.

При помощи ваттметра 10 была измерена потребляемая электрическая мощность (N1) для осуществления предлагаемого способа, которая была равна 6 кВт. Производимую мощность (N2) определяли по выражению (1), в данном случае она равна 6,5 кВт.

Разделив электрическую потребляемую мощность (N1), которая в данном случае равна 6 кВт, на производимую мощность (N2), которая равна 6,5 кВт, получают коэффициент (к), равный 1,08.

П р и м е р ы 2-12. Способ осуществляли аналогично описанному в примере 1. Обрабатываемое вещество в жидкой фазе, его температура, параметры обработки (Р1, Р2, Р3, ), потребляемая мощность (N1) и производимая тепловая мощность (N2) приведены в таблице.

Из таблицы видно, что при обработке различных веществ в жидкой фазе при определенных переменном и статическом давлениях, лежащих в указанных пределах (т. е. при осуществлении предлагаемого способа) получаемая энергия в несколько раз больше, чем потребляемая энергия.

На графиках, приведенных на фиг.4, изображена зависимость разности мощностей ( N) тепловыделения и электропотребления от соотношения статического и переменного давлений в активаторе. Указан- ную зависимость определяли при осуществлении предлагаемого способа, используя в качестве обрабатываемого вещества водопроводную воду при температуре 20оС. По оси абсцисс отложено переменное давление, по оси ординат разность мощностей N. Кривая I на графике соответствует статическому давлению Р1 0, кривая II статическому давлению Р1 0,6 МПа, кривая III статическому давлению Р1 0,8 МПа, кривая IV статическому давлению Р1 1 МПа.

Из указанных графиков четко видна граница заявленного интервала соотношений переменного и статического давлений. Все, что лежит левее 2,3 МПа (график I), т.е. переменное давление Р2 меньше 2,3 МПа при статическом давлении Р1 0, не удовлетворяет предлагаемому соотношению давлений Р1 и Р2, и при этом количество выделяемой энергии меньше, чем количество потребляемой энергии. При увеличении переменного давления Р2 более 2,3 МПа, т.е. при соблюдении указанного соотношения Р1 и Р2, выделяющаяся энергия больше потребляемой энергии.

Для графика II, где статическое давление Р1 0,6 МПа, все, что лежит левее 1,2 МПа, не удовлетворяет предлагаемому соотношению, и при этом количество выделяемой энергии меньше количества потребляемой.

Аналогично путем экстраполяции можно определить область, при которой потребляемая энергия меньше выделяемой и для графиков III и IV.

На фиг.5 изображена графическая зависимость разности мощностей ( N) тепловыделения и электропотребления от соотношения Р1 и Р2 при осуществлении предлагаемого способа в устройстве меньшей мощности. График V соответствует статическому давлению Р1 0,1 МПа, график VI Р1 0,2 МПа, график VII Р1 0,3 МПа, график VIII Р1 0,4 МПа, график IX Р10,5 МПа.

Из указанных графиков V, VI, VII, VIII, IX так же, как из графиков I, II, III, IV, изображенных на фиг.4, видно, что только при выполнении указанного соотношения Р1 и Р2 выделяемая энергия больше потребляемой энергии. При этом для графика V видно, что правее значения Р2 26 МПа, т.е. при несоблюдении указанного выше соотношения, выделяемая энергия становится меньше потребляемой.

Так как предлагаемый способ получения энергии характеризуется практическим отсутствием ионизирущих излучений, то для подтверждения протекания ядерных реакций в кавитационных пузырьках обрабатываемой жидкости на фиг.6 и 7 представлены графические зависимости +-излучений при обработке водопроводной воды с температурой 20оС с различными добавками стабильных изотопов различных веществ. По оси ординат дано усредненное значение количества -квантов и -частиц за одну секунду, регистрируемое детектором 13 радиометра 12 (фиг.2). Усреднение дано за каждый час измерений. По оси абсцисс отмечено время (t) в часах и сутках. Кроме того, по оси абсцисс на фиг.6 и 7 отмечено время () работы ультразвукового активатора. При этом гарфик 61 (фиг.6) отражает зависимость +-излучений при обработке водопроводной воды с температурой 20оС с добавлением воздуха в количестве 1,8·10-6 кг/с в соответствии с предлагаемым способом, график 62 то же с добавлением воздуха в количестве 3,6·10-6 кг/с, график 63 то же с добавлением воздуха в количестве 0,9·10-6 кг/с, график 64 то же с добавлением углекислого газа в количестве 2·10-6 кг/с, график 65 то же с добавлением углекислого газа в количестве 10-6 кг/с.

График 71 (фиг. 7) отражает зависимость регистрируемых детектором 13 +-излучений от времени пребывания последнего в активной зоне. График 72 отражает зависимость +-излучений при обработке водопроводной воды с температурой 20оС с добавлением углекислого газа в количестве 4·10-6 кг/с, график 73 то же с добавлением углекислого газа в количестве 2·10-6 кг/с. График 74 отражает зависимости +-излучений без включения ультразвукового активатора, регистрируемую на поверхности активатора (обозначено точками) и на расстоянии 13 м от активатора (обозначено ), график 75 то же, что и график 72 с добавлением углекислого газа в количестве 16 x x10-6 кг/с и зависимость +-излучений, регистрируемую на расстоянии 13 м от активатора (обозначено ).

Из представленных на фиг.6 и 7 графиков видно, что при включении ультразвукового активатора, т.е. при обработке водопроводной воды при температуре 20оС и соблюдении соотношения переменного и постоянного давлений в указанных пределах, происходит увеличение +-излучений, что возможно только при протекании ядерных реакций.

Аналогичные исследования были проведены при добавлении в водопроводную воду углекислого натрия (Na2CO3), бензина, хлористого лития (LiCl) и других веществ. Результаты регистрируемых +-излучений аналогичны представленным на фиг.6 и 7.

Увеличение нейтронного излучения, которое подтверждает протекание ядерных реакций при осуществлении предлагаемого способа, проиллюстрировано на фиг.8 и 9.

На фиг.8 изображен график нейтронного излучения естественного фона в течение нескольких часов. На оси ординат отмечен нейтронный поток (n, 1/c), на оси абсцисс время (t) в часах.

На фиг. 9 изображен график нейтронного излучения при работе ультразвукового активатора, т.е. при осуществлении предлагаемого способа и соблюдении соотношения переменного и статического давлений при обработке водопроводной воды с температурой 20оС с добавлением хлористого лития (LiCl). На фиг.9 изображены также три периода, обозначенные временем 1,2 и 3, в течение которых детектор 15 нейтронного радиометра 14 был установлен на расстоянии соответственно 0,5; 1,25 и 3,2 м от поверхности ультразвукового активатора.

При сравнении графика, изображенного на фиг.8, с графиком, изображенным на фиг.9, видно, что нейтронное излучение при работе активатора значительно выше (на несколько порядков), чем естественный фон. Это еще раз свидетельствует о том, что при осуществлении предлагаемого способа в кавитационных пузырьках обрабатываемой жидкости протекают ядерные реакции.

Аналогичные исследования по нейтронному излучению были проведены и при добавлении в обрабатываемую жидкость других компонентов (например, бензина), позволяющих увеличить нейтронное излучение до уровня, который можно измерить имеющимися приборами. Эти исследования привели к аналогичным результатам.

Таким образом, использование предлагаемого способа позволяет в промышленном масштабе получать энергию, образующуюся в результате сильного взаимодействия элементарных частиц обрабатываемого вещества.

Проще всего предлагаемый способ применить в промышленном масштабе в области отопления и горячего водоснабжения гражданских и промышленных объектов. Для этого необходимо подключить устройство для осуществления предлагаемого способа к системе отопления и горячего водоснабжения объекта, например в тепловых, распределительных, насосных пунктах.

Использование предлагаемого способа экономически выгодно потому, что, во-первых, в данном случае капитальные затраты сведены практически к нулю. Нет необходимости строить котельные, склады топлива, полъездные пути, транспортные трубопроводы и многое другое. Во-вторых, количество производимой энергии в несоклько раз первышает потребляемую энергию. В-третьих, окружающая среда не загрязняется потерями топлива при добыче, транспортировке и продуктами его сгорания.

ФОРМУЛА ИЗОБРЕТЕНИЯ

СПОСОБ ПОЛУЧЕНИЯ ЭНЕРГИИ, включающий подачу вещества в жидкой фазе в зону обработки и создание в веществе кавитационных пузырьков, отличающийся тем, что кавитационные пузырьки в веществе создают путем создания периодически изменяющегося давления, имеющего постоянную и переменную составляющие, причем указанные составляющие выбирают из следующих соотношений:

P1 = (0,3 oC 0,7) (P2 + P3);

P2+P3-P1= (1÷10),

где P1 - постоянная составляющая давления, МПа;

P2 - переменная составляющая давления, МПа;

P3 - давление насыщенных паров обрабатываемого вещества при температуре подачи его в зону обработки, МПа;

- прочность на разрыв обрабатываемого вещества при температуре подачи его в зону обработки, МПа.

Разместил статью: Admin
Дата публикации:  24-09-2011, 11:20

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Энерготеплохолодильная установка
Назначение: в теплоэнергетике, в частности, для одновременного получения электрической энергии, тепла и холода, а также в качестве авторефрижераторных установках. Достигаемый технический результат - одновременное производство электрической энергии, тепла и холода, значительное снижение затрат материальных ресурсов для получения данного эффекта, применение технологий в холодильной технике, не вызывающих разрушения озонового слоя атмосферы, а также повышение КПД установки в целом. Сущность...

Теплоэлектрогенератор
Назначение: в коммунально-бытовой технике. Сущность изобретения: термоэмиссионные преобразователи содержат эмиттеры, коллекторы, тепловые трубы и общую систему охлаждения. Инвертор включен в систему энергоснабжения. Теплообменник-рекуператор размещен в среде отходящих газов между керамическими горелками и теплообменником с возможностью нагрева воздуха после вентилятора. Тепловые трубы установлены в верхней части топочного устройства и взаимодействуют с коллекторами и системой охлаждения....








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: 1*(1+4)+3=?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Устройство для нагрева жидкости

Устройство для нагрева жидкости Ноу-хау разработки, а именно данное изобретение автора относится к теплотехнике, а именно к теплогенераторам, и может быть использовано для отопления…
читать статью
Теплогенераторы для жидких сред
Термоэлектрический тепловой насос для бытового отопления

Термоэлектрический тепловой насос для бытового отопления Изобретение относится к отопительным приборам и может использоваться в бытовых условиях. Термоэлектрический тепловой насос для бытового отопления…
читать статью
Нетрадиционная теплоэнергетика
Тригенерационная установка на базе микротурбинного двигателя

Тригенерационная установка на базе микротурбинного двигателя Изобретение относится к области теплоэнергетики и энергосбережения, предназначено для одновременной выработки электрической, тепловой энергий и…
читать статью
Нетрадиционные источники энергии, Нетрадиционная теплоэнергетика
Ветровой теплогенератор

Ветровой теплогенератор Изобретение относится к ветроэнергетике и может быть использовано для приготовления горячей воды и снабжения ею различных потребителей. Ветровой…
читать статью
Нетрадиционная теплоэнергетика, Солнечные, ветровые, геотермальные теплогенераторы, Теплогенераторы для жидких сред
Теплонасосная установка

Теплонасосная установка Теплонасосная установка предназначена для отопления помещений, например индивидуальных домов, коттеджей, теплиц, и выработки горячей воды для бытовых…
читать статью
Теплогенераторы для жидких сред
Туристическая печка

Туристическая печка Изобретение относится к туристическому оборудованию, предназначенному для приготовления пищи в походных и экстремальных условиях. Туристическая печка…
читать статью
Теплогенераторы для жидких сред
Способ выделения энергии посредством вращательно-поступательного движения жидкости и устройство для преобразования и выделения энергии в жидких средах

Способ выделения энергии посредством  вращательно-поступательного движения жидкости и устройство для преобразования и выделения энергии в жидких средах Ноу-хау разработки, а именно данное изобретение автора относится к способам воздействия на поток текучей среды и может быть использовано в…
читать статью
Нетрадиционная теплоэнергетика
Термогенератор для подогрева воды

Термогенератор для подогрева воды Ноу-хау разработки, а именно данное изобретение автора относится к системам отопления зданий и сооружений, транспортных средств, подогрева воды.…
читать статью
Теплогенераторы для жидких сред
Система подогрева или охлаждения пола, потолка и стен

Система подогрева или охлаждения пола, потолка и стен Изобретение относится к системам нагрева или охлаждения. Система подогрева или охлаждения пола, потолка и стен содержит панели, каждая из которых…
читать статью
Теплогенераторы для жидких сред
Проточный электронагреватель жидкости

Проточный электронагреватель жидкости Изобретение относится к области электроэнергетики, к конструкциям электрических приборов для местного горячего водоснабжения, отопления помещения,…
читать статью
Теплогенераторы для жидких сред
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
College Girls Porn Pics
New project started to be available today, check it out
Free Porn Pictures and Best HD Sex Photos
New super hot photo galleries, daily updated collections
New super hot photo galleries, daily updated collections
Sexy teen photo galleries
Girls of Desire: All babes in one place, crazy, art
Hot new pictures each day
Hardcore Galleries with hot Hardcore photos
Hot new pictures each day
⇩ Каталог организаций ⇩
- Добавь свою организацию -
Страна Заборов
Ингардия
Амтек Окна Киев
Отличная СПЕЦОДЕЖДА №1 - одежда для РЫБАЛКИ, ОХРАНЫ, ТУРИЗМА и ОХОТЫ
Детский Центр ЛОГОС
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
miha111
Публикаций: 3445
Комментариев: 0
pi31453_53
Публикаций: 9
Комментариев: 0
3vlad63
Публикаций: 8
Комментариев: 0
Pavel_Merkel
Публикаций: 7
Комментариев: 23
shibanov_a
Публикаций: 6
Комментариев: 0
Evroavzjo
Публикаций: 0
Комментариев: 0
Patriothhv
Публикаций: 0
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2019 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru