Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Ручной металлодетектор
Изобретения Российской Федерации » Электроника и электротехника » Металлоискатели и металлодетекторы
Ручной металлодетектор Ноу-хау разработки, а именно данное изобретение автора относится к области обнаружения скрытых металлических объектов и может быть использовано для обнаружения огнестрельного оружия, спрятанного в одежде или обуви досматриваемого человека. Сущность изобретения заключается в том, что металлодетектор содержит катушку возбуждения и четыре приемных катушки, которые вместе образуют однонаправленный индуктивный датчик. Приемные катушки соединены попарно и вместе с соответствующим синхронным...
читать полностью


» Изобретения Российской Федерации » Технология сварки и сварочное оборудование
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
0
Добавить эту страницу в свои закладки на сайте »

Устройство и способ измерения индукционным методом


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Украины на полезную модель UAUA2010119330/28

Изобретение относится к устройству для регистрации дефектов в контролируемом образце, перемещаемом относительно предлагаемого устройства, при неразрушающем и бесконтактном контроле, которое имеет блок передающих катушек, содержащий по меньшей мере одну передающую катушку, предназначенную для намагничивания контролируемого образца периодическими переменными электромагнитными полями, блок улавливающих катушек, содержащий по меньшей мере одну улавливающую катушку, предназначенную для регистрации периодического электрического сигнала, содержащего несущее колебание, при этом когда дефект регистрируется улавливающими катушками, наличие дефекта в контролируемом образце способствует формированию характерной амплитуды и/или фазы сигнала, блок обработки сигналов, предназначенный для формирования полезного сигнала из сигнала улавливающей катушки, и блок обработки результатов, предназначенный для обработки полезного сигнала с целью обнаружения дефектов в контролируемом образце. В устройстве предусмотрен блок самотестирования, предназначенный для осуществления автоматически или по внешнему запросу систематического количественного контроля функций обработки сигналов блока обработки сигналов и/или систематического количественного контроля передающих катушек и/или улавливающих катушек и/или для осуществления по внешнему запросу калибровки блока обработки сигналов посредством калибровочного эталона, устанавливаемого вместо передающих и/или улавливающих катушек. Изобретение обеспечивает высокую надежность результатов проверки, так как обеспечена возможность точного выявления неисправностей в отдельных электронных компонентах устройства. 2 н. и 16 з.п. ф-лы, 5 ил. Данное изобретение относится к устройству и способу регистрации дефектов в контролируемом образце при неразрушающем и бесконтактном контроле посредством измерения вихревых токов или измерения магнитного потока рассеяния. Изобретение относится также к устройству и способу регистрации электропроводных частиц в текущей в трубе жидкости, причем регистрируют наведенные в частицах вихревые токи.

 

Известно, что способ измерения при регистрации дефектов в контролируемом образце, в частности в металлической заготовке, при неразрушающем и бесконтактном контроле заключается в наведении и измерении вихревых токов в контролируемом образце. При этом контролируемый образец посредством передающей катушки, через которую пропускают синусоидальный ток, подвергают воздействию периодических переменных электромагнитных полей. Вихревые токи, наведенные в контролируемом образце, в свою очередь наводят в катушках, используемых в качестве датчика, периодический электрический сигнал, содержащий несущее колебание, соответствующее несущей частоте передатчика. Причем когда дефект попадает в диапазон чувствительности датчика, наличие дефекта в контролируемом образце способствует формированию характерной амплитуды и/или фазы сигнала. Как правило, контролируемый образец для обнаружения в нем дефектов перемещают относительно датчика прямолинейно. Кроме того, известны устройства с вращающимся датчиком. Вихретоковое измерительное устройство с линейно перемещаемым контролируемым образцом известно из патентного документа US 5175498.

 

Аналогичным образом электропроводные частицы в жидкости, протекающей через катушки, наводят вихревые токи, причем измеряют эти вихревые токи путем измерения изменения полного сопротивления катушек. Таким образом, индуктивные катушки обеспечивают возможность регистрации электропроводных частиц в протекающей в трубе жидкости. Это особенно предпочтительно в случае, когда необходимо определить концентрацию металлических частиц в контуре циркуляции смазки машины и сделать заключение о состоянии машины (концентрация металлических частиц, как правило, является показателем износа машины).

rnrnrnrnrnrnrnrnrn

 

Кроме того, при регистрации дефектов в контролируемом образце при неразрушающем и бесконтактном контроле существует способ измерений, известный как измерение магнитного потока рассеяния (или измерение магнитного поля рассеяния), при котором индуктивная катушка с магнитным ярмом намагничивает контролируемый образец, а магнитный поток рассеяния, созданный при этом образцом, измеряют соответствующим датчиком. Регистрация дефектов в контролируемом образце возможна благодаря их воздействию на магнитный поток рассеяния. Пример такого способа измерения магнитного потока рассеяния раскрыт в патентном документе US 4445088.

 

С помощью вихретоковых приборов с датчиками, вращающимися по периферии контролируемого образца, измеряют расстояние между головкой датчика и контролируемым образцом, что позволяет корректировать измерения расстояния, меняющегося в течение одного оборота, например, вследствие децентрирования или асимметрии поперечного сечения образца. Данное устройство известно из патентного документа DE 4003330 А1. Из публикации WO 2006/007826 А1 известен вихретоковый прибор с цифровым устройством предварительной обработки данных, в котором запуск каскада аналого-цифровых преобразователей происходит с каждой n-ной целочисленной долей частоты несущего колебания, причем число n выбирают в зависимости от частоты дефектов, то есть отношения скорости движения контролируемого образца относительно датчика к эффективной ширине зоны чувствительности датчика.

 

В патентном документе US 4209744 описан вихретоковый прибор, содержащий тестер, имитирующий сигналы, соответствующие сигналам дефектов контролируемого образца, что позволяет осуществить комплексную проверку электронных устройств. Однако данный тестер способен имитировать только один сигнал дефектов с определенной амплитудой и определенной основной частотой. Даже если предусмотреть различные имитирующие сигналы дефектов, проверить все электронные приборы, как правило, невозможно. Кроме того, невозможно направить такой имитирующий сигнал дефекта к сертифицированному опорному элементу, не демонтируя все электронные устройства и не отправив их в лабораторию.

 

В документе WO 01/22075 А2 раскрыт вихретоковый прибор, посредством которого в процессе выполнения самокалибровки системы определяют интенсивность сигнала, полученного от участка контролируемого образца, не содержащего дефект.

 

В публикации GB 2192064 описан индукционный измерительный прибор, который для имитации дефекта посредством устройства самотестирования расстраивают путем включения светодиода.

rnrnrnrnrnrnrnrnrn

 

Задача данного изобретения заключается в том, чтобы предложить устройство и способ регистрации дефектов в контролируемом образце при неразрушающем и бесконтактном контроле или устройство и способ регистрации электропроводных частиц в протекающей в трубе жидкости, в частности, посредством измерения вихревых токов или магнитного потока рассеяния, при этом необходимо обеспечить наиболее надежное измерение.

 

Эта задача решена благодаря предлагаемому устройству по п.1 и способу по п.16 и, соответственно, устройству по п.15 и способу по п.19.

 

Техническое решение согласно данному изобретению имеет следующее преимущество. Благодаря тому, что в нем предусмотрено устройство самотестирования для осуществления систематического количественного контроля функций обработки сигналов блока обработки сигналов и/или систематического количественного контроля передающих и/или улавливающих катушек и/или для калибровки по внешнему запросу блока обработки сигналов посредством калибровочного эталона, устанавливаемого вместо передающих и/или улавливающих катушек, становится возможным осуществление комплексного контроля функций устройства предварительной обработки данных, в частности фильтров и усилителей, а также датчиков. Вследствие чего обеспечена высокая надежность результатов измерений. При этом возможна несложная калибровка устройства, в особенности калибровка предусмотренного регулируемого предварительного усилителя.

 

В целом достигают высокой надежности результатов проверки, так как обеспечена возможность точного выявления неисправностей в отдельных электронных компонентах устройства. При этом надежность результатов выше по сравнению с известной из существующего уровня техники калибровкой по имитируемому эталонному дефекту, это связано с тем, что, как правило, данный сигнал в имитированном виде на практике не возникает, таким образом, достоверность результатов калибровки по такому эталонному дефекту сравнительно низка, при этом не удается осуществить комплексный количественный контроль отдельных компонентов.

 

Данное изобретение можно использовать не только для регистрации дефектов в движущемся контролируемом образце при неразрушающем и бесконтактном контроле, а именно, посредством вихретокового или индукционного дефектоскопа, согласно пп.1 и 16 формулы изобретения, а также для регистрации электропроводных частиц в жидкости, текущей в трубе с некоторой скоростью, а именно, посредством так называемого счетчика частиц. Данное техническое решение раскрыто в пп.15 и 19 формулы изобретения.

 

Предпочтительно предусмотрено устройство самотестирования, предназначенное для переключения блока обработки сигналов для контроля функций обработки сигналов, вследствие чего сигнал для передающих катушек подают в виде периодического входного сигнала прямо в блок обработки сигналов, причем входной сигнал систематически меняется. Как правило, блок обработки сигналов содержит усилители и частотные фильтры, при этом блок самотестирования путем изменения частоты и амплитуды сигнала для передающих катушек проверяет, находятся ли измеренные усиление усилителей, предельные частоты и крутизна характеристик частотных фильтров в пределах заданной спецификации, причем если спецификация не выполнена, выдается соответствующий сигнал ошибки.

 

Формирователь передающей катушки предпочтительно имеет датчик тока, при этом блок самотестирования по току и напряжению передающей катушки определяет и контролирует ее полное сопротивление. Предпочтительно улавливающая катушка выполнена в виде дифференциальной катушки, при этом блок самотестирования определяет и контролирует напряжение разбаланса улавливающей катушки. Блок самотестирования предпочтительно обеспечивает возможность хранения тока передающей катушки и напряжения разбаланса улавливающей катушки как функцию времени в запоминающем устройстве, что позволяет контролировать изменения в передающей и улавливающей катушках в течение длительного времени.

 

rnrnrnrnrnrnrnrnrn

Устройство может быть выполнено в виде многоканального устройства, причем передающие и улавливающие катушки в каждом случае содержат несколько катушек, каждая их которых предназначена для определенной измерительной частоты.

 

Калибровочный эталон предпочтительно представляет собой по меньшей мере одно RC-звено, причем калиброванное измерительное сопротивление RC-звена позволяет проверить точность аналого-цифрового преобразователя (преобразователей) блока обработки сигналов, а предельная частота RC-звена - частоту дискретизации процессора блока обработки сигналов. Калибровочный эталон также может представлять собой делитель напряжения, сертифицированный поверочной лабораторией. При этом чувствительность всей системы проверяют посредством калиброванного опорного элемента, вследствие чего возможно осуществление проверки всей системы по меньшей мере за одно типовое регулирование.

 

Устройство предварительной обработки предпочтительно является цифровым, то есть сигнал улавливающей катушки дискретизируется посредством запускаемого каскада аналого-цифровых преобразователей, а затем фильтруется посредством частотных фильтров, в результате чего формируется демодулированный полезный сигнал, причем запуск каскада аналого-цифровых преобразователей происходит с каждой n-ной целочисленной долей частоты несущего колебания, причем число n выбирают в зависимости от частоты дефектов, а именно отношения скорости движения контролируемого образца относительно улавливающих катушек к эффективной ширине зоны чувствительности улавливающих катушек, причем частотные фильтры регулируют в зависимости от частоты дефектов.

 

Как правило, блок обработки сигналов содержит регулируемый предварительный усилитель сигнала улавливающей катушки, причем предусмотрена возможность проверки предварительного усилителя благодаря тому, что на калибровочный эталон, выполненный в виде RC-звена, подают фиксированное синусоидальное напряжение, амплитуда которого выбрана так, что при самой низкой чувствительности регулирования предварительного усилителя синусоидальный сигнал посредством аналого-цифрового преобразователя преобразуется с необходимой точностью в цифровую форму, вследствие чего при более высоком усилении предварительного усилителя синусоидальный сигнал перемодулируется, причем, чтобы определить фактическую амплитуду сигнала, перемодулированный синусоидальный сигнал восстанавливают путем математической аппроксимации, например путем конфлюэнтного анализа.

 

Ниже представлено подробное описание изобретения со ссылкой на прилагаемые чертежи, на которых изображено следующее.

 

На фиг.1 изображена структурная схема предлагаемого индукционного измерительного устройства с функциями самотестирования и калибровки.

Устройство и способ измерения индукционным методом


На фиг.2 изображена структурная схема варианта осуществления предлагаемого индукционного измерительного устройства, предназначенного для регистрации дефектов в перемещаемом контролируемом образце.

 

Устройство и способ измерения индукционным методом


На фиг.3 изображена структурная схема варианта осуществления предлагаемого индукционного измерительного устройства, предназначенного для регистрации электропроводных частиц в текущей жидкости.

 

Устройство и способ измерения индукционным методом

 

Фиг.4 изображает схематичный продольный разрез трубы с текущей в ней жидкостью, причем на трубе предусмотрены передающая и улавливающая катушки соответственно для использования с измерительным устройством согласно фиг.3.

 

Устройство и способ измерения индукционным методом

 

На фиг.5 изображена структурная схема соединения катушек, представленных на фиг.4.

 

Устройство и способ измерения индукционным методом

 

На фиг.1 представлена структурная схема предлагаемого индукционного измерительного устройства с функциями самотестирования и калибровки. Процессор 60 обработки сигналов взаимодействует с PAL-элементом 68, предназначенным для управления аналого-цифровыми и цифроаналоговыми преобразователями. PAL-элемент 68 питает формирователь 70 передающей катушки, имеющий датчик 72 тока, и выдает сигнал для передающих катушек (на фиг.1 не показано) датчика 11 (измерительной головки). Сигнал, полученный улавливающими катушками (на фиг.1 не показано) датчика 11, поступает в малошумящий усилитель 74, выполняющий функцию предварительного усилителя, при этом процессор 60 посредством PAL-элемента 68 контролирует или регулирует его усиление. Усиленный усилителем 74 сигнал проходит через резонансный фильтр 78 и после преобразования в цифровую форму в аналого-цифровом преобразователе 80, имеющем, например, разрядность 18 бит, поступает в PAL-элемент 68 и далее в процессор 60 для обработки или анализа. Таким образом, из сигнала улавливающей катушки формируется полезный сигнал, обрабатываемый в устройстве обработки данных, выполненном в виде процессора 60 и/или внешнего устройства, например ПК (персонального компьютера) 64.

 

Кроме того, данная система содержит датчик 82 расстояния с передающей и улавливающей катушками (катушки не показаны), предназначенный для получения из сигнала улавливающей катушки датчика 82 сигнала расстояния, представляющего собой показатель расстояния между контролируемым образцом и датчиком 11. Для этого предусмотрен формирователь 84 передающей катушки датчика 82 расстояния, который имеет датчик 86 тока и питается от PAL-элемента 68. Сигнал улавливающей катушки датчика 82 расстояния поступает в блок 88, в котором происходит усиление, сдвиг и выпрямление сигнала расстояния. PAL-элемент 68 контролирует блок 88 точно так же, как и усилитель 74. Таким образом, обработанный сигнал расстояния через аналого-цифровой преобразователь 90, имеющий, например, разрядность 16 бит, поступает в PAL-элемент 68 и далее в процессор 60 для обработки. Возможно использование нескольких датчиков 82 расстояния.

 

Элементы 68, 70, 74, 76, 78, 80 и при необходимости элемент 60, а также элементы 84, 86, 88 и 90 являются частью блока обработки сигналов, из сигналов улавливающей катушки они формируют полезный сигнал для обработки посредством блока обработки данных.

 

В процессоре 60 предусмотрен блок 62 самотестирования, который автоматически, например, при каждом пуске системы или по запросу через интерфейс пользователя, реализованный, например, в виде ПК 64 и/или сенсорного дисплея 65, осуществляет систематический количественный контроль функций обработки сигналов блока обработки сигналов устройства предварительной обработки данных и систематический количественный контроль датчика 11 и датчика 82 расстояния.

 

Для управления блоком обработки сигналов предусмотрено переключающее устройство 66, содержащее три переключателя 63, 67, 69 и включаемое блоком 62 самотестирования (при этом переключатели 63 и 67 разомкнуты, а переключатель 69 замкнут), причем сигнал для передающей катушки датчика 11 подобно периодическому входному сигналу поступает непосредственно в блок обработки сигналов, то есть на вход усилителя 74, в обход передающей катушки.

 

В процессе самотестирования блок 62 самотестирования обеспечивает изменение частоты и амплитуды сигнала для передающей катушки, чтобы проверить, находятся ли измеренное усиление усилителя 74 и измеренные предельные частоты и крутизна характеристик частотного фильтра 78 в пределах заданной спецификации, причем если спецификация не выполнена, в интерфейс 64 или 65 пользователя поступает соответствующий сигнал ошибки.

 

Данное устройство можно выполнить в виде многоканального устройства, причем в этом случае формирователь 70 передающей катушки, датчик 11 и переключающее устройство 66 предусмотрены в одном экземпляре для каждого канала, а перед усилителем 74 подключен мультиплексор 76 (в этом случае для каждой предающей катушки предусмотрена собственная частота).

rnrnrnrnrnrnrnrnrn

 

Между формирователем 84 и блоком 88 предусмотрено переключающее устройство 92 самотестирования, содержащее три переключателя 89, 91, 93 и включаемое блоком 62 самотестирования (при этом переключатели 89 и 91 разомкнуты, а переключатель 93 замкнут), в результате чего происходит самотестирование блока 88 или аналого-цифрового преобразователя 90 благодаря тому, что сигнал, выданный формирователем 84 катушки, поступает прямо на вход блока 88 в обход передающей катушки датчика 82 расстояния, причем посредством блока 62 самотестирования возможно систематическое изменение частоты и амплитуды сигнала формирователя катушки.

 

Перед аналого-цифровым преобразователем 90 подключен мультиплексор 94, в который кроме выходного сигнала блока 88 поступает токовый сигнал датчика 72 тока и токовый сигнал датчика 86 тока, причем сигналы датчиков тока поступают на обработку так же, как в случае блока 62 самотестирования. По току передающей катушки, зарегистрированному датчиком 72 тока или, соответственно, датчиком 86 тока, и напряжению передающей катушки посредством блока 62 самотестирования можно устанавливать и контролировать полное сопротивление соответствующей передающей катушки, причем при необходимости через интерфейс 64 или 65 выдается сигнал ошибки. Напряжения передающих катушек измерены в точках 1 и 3 соответственно, через мультиплексор 94 и аналого-цифровой преобразователь 90 они поступают в PAL-элемент.

 

Кроме того, блок 62 самотестирования выполнен с возможностью осуществления контроля напряжения разбаланса (напряжение разбаланса имеют только дифференциальные катушки) улавливающей катушки датчика 11 (напряжение разбаланса катушки возникает в каждой дифференциальной катушке, так как не существует двух совершенно идентичных катушек).

 

Предусмотрена возможность устранения напряжения разбаланса из принятого сигнала посредством фильтра верхних частот, в этом случае разность напряжений перед фильтром и после него дает напряжение разбаланса.

 

Предпочтительно блок 62 самотестирования обеспечивает возможность хранения тока передающей катушки и напряжения разбаланса улавливающей катушки в запоминающем устройстве в виде временной функции, что позволяет контролировать изменения передающих и улавливающих катушек в течение длительного времени. Этот контроль особенно важен, когда система выполнена в виде индукционного счетчика частиц, так как в этом случае без затруднений снять и проверить катушки невозможно.

 

Кроме того, блок 62 самотестирования обеспечивает возможность осуществления калибровки электронных схем обработки сигналов посредством сертифицированного калибровочного эталона 96, устанавливаемого вместо датчика 11. Со стороны входа калибровочный эталон 96 подключен к формирователю передающей катушки 70, со стороны выхода - к мультиплексору 76 или усилителю 74. Если калибровочный эталон 96 содержит несколько опорных элементов, например различные резисторы, которые в процессе калибровки необходимо переключать, то для включения соответствующих опорных элементов в калибровочном эталоне 96 предусмотрен соединительный элемент 98, например шина PC, подсоединяемая к процессору 60 или блоку 62 самотестирования.

 

Точки 2 и 4 обеспечивают возможность определения напряжения непосредственно перед входными каналами усилителя 74 или блока 88. Вследствие чего становится возможным, например, измерить падение напряжения непосредственно на опорном элементе, например на калибровочном эталоне 96, установленном вместо соответствующей катушки.

 

Калибровочный эталон предпочтительно имеет по меньшей мере одно RC-звено, содержащее по крайней мере один калиброванный измерительный резистор, который обеспечивает возможность проверки точности аналого-цифровых преобразователей электронных схем обработки сигналов. Кроме того, точно известная предельная частота RC-звена обеспечивает возможность проверки частоты дискретизации процессора 60. Чтобы подавить помехи, измерительный резистор калибровочного эталона 96 выполнен в виде фильтра нижних частот. В качестве опорного элемента он обеспечивает определенное напряжение на входе аналого-цифрового преобразователя 80, в результате чего также можно исключить нежелательные колебания частоты дискретизации.

 

Калибровку проводят, например, один раз в год.
Калибровочный эталон 96 представляет собой отдельный не зависящий от измерительного устройства блок, подключаемый к измерительному устройству в предусмотренном для этого месте только при проведении калибровки. Преимущество такого конструктивного исполнения заключается в том, что контролировать калибровку калибровочного эталона можно несложным способом в сертифицированной калибровочной лаборатории.

 

В качестве альтернативного варианта калибровочный эталон 96 можно выполнить как часть измерительного устройства, например, в виде элемента, расположенного на плате измерительного устройства и подключаемого при необходимости вместо соответствующей катушки. Преимущество данного конструктивного исполнения заключается в том, что нет необходимости открывать измерительное устройство при подготовке к калибровке. Очевидно, в этом случае невозможно контролировать калибровку калибровочного эталона.

 

В частности, использование калибровочного эталона 96 целесообразно при калибровке регулируемого предварительного усилителя 74. В случае если с целью экономии калибровочный эталон 96 имеет только одно или несколько опорных значений сопротивления, возможен следующий способ калибровки. Формирователь 70 передающей катушки подает на RC-звено калибровочного эталона 96 постоянное синусоидальное напряжение, которое имеет такое значение, что при низкой чувствительности усилителя 74 синусоидальный сигнал посредством аналого-цифрового преобразователя 80 преобразуется в цифровую форму с заданной точностью. Если посредством PAL-элемента 68 коэффициент усиления возрастает, то синус в какой-то момент времени срезается, причем в этом случае предусмотрена возможность восстановления срезанного синуса путем математической аппроксимации, например, используя конфлюэнтный анализ, вследствие чего можно измерить фактическую амплитуду сигнала. Осуществление данного способа возможно при условии, что используемые электронные устройства функционируют без эффекта "защелкивания" и, например, входной каскад аналогово-цифровых преобразователей 80 защищен от разрушения в результате перенапряжения.

 

Например, для синуса можно решить следующее уравнение конфлюэнтного анализа:

 

А0*n+А1*[sin(x)]+A2*[cos(x)]=[yi]
A0*[sin(x)]+A1*[sin2(x)]+A2*[sin(x)*cos(x)]-[yi*sin(x)]
A0*[cos(x)]+А1*[sin(x)*cos(x)]+A2*cos3 (s)]=[yi*cos(x)]

 

где yi - измеренные значения, y(i)=A0+A1*sin(x)+A2*cos(x), a x=2* *f*:i*dt, где f - частота. В соответствии с принятой в математической статистике формой записи квадратные скобки обозначают суммирование по управляющей переменной i от нуля до n. При этом те измеренные величины, которые лежат за пределами допустимого диапазона, то есть "отрезанные" значения, не используют. Параметр х представляет собой текущий угол. Он не должен быть эквидистантным.

 

Вычислив абсолютные величины А1 и А2, получают исходную амплитуду A=SQRT(A1*A1+A2*A2) и сдвиг фазы PHI=arctan(A2/A1).

 

Очевидно, описанный способ восстановление сигнала можно использовать не только при контроле регулируемого усилителя 74, но и непосредственно при осуществлении вихретоковой дефектоскопии, в случае если в улавливающей катушке возникают сигналы, вызывающие перемодуляцию аналого-цифрового преобразователя. Вследствие чего, такой способ восстановления сигнала обеспечивает возможность расширения диапазона измерений посредством программного обеспечения.

 

Такой относительно простой контроль регулируемого усилителя 74 позволяет, например, хранить в запоминающем устройстве поправочные коэффициенты и использовать их для соответствующего усиления, вследствие чего становится возможным изготовить усилитель при заданном качестве с меньшими затратами.

 

Резонансные фильтры, например резонансный фильтр 78 (или комбинация фильтра верхних частот и фильтра нижних частот), выполнены с возможностью функционирования с переменной несущей частотой передатчика, причем наиболее оптимальная частота дискретизации представляет собой функцию, зависящую от скорости перемещения контролируемого образца, эффективной ширины зоны чувствительности катушки и несущей частоты передатчика. Как сказано выше, при самотестировании путем изменения частоты и амплитуды входного напряжения можно определить предельные частоты и крутизну амплитудно-частотной характеристики фильтров на границе полосы пропускания.

 

Указанные измерения полного сопротивления передающих и улавливающих катушек посредством блока 62 самотестирования позволяют своевременно обнаружить изменения в датчиках и прежде всего различные неисправности, что обеспечивает возможность максимально сократить время, в течении которого контроль осуществляется посредством неисправных датчиков. В результате измерения становятся более надежными.

 

Указанное измерение напряжения разбаланса улавливающей катушки посредством блока 62 самотестирования позволяет своевременно обнаружить проблемы, связанные с перенапряжением, например, в совокупности с определенными материалами контролируемых образцов, после этого принять предупредительные меры и, таким образом, повысить надежность контроля.

 

Возможность осуществления калибровки системы посредством блока 62 самотестирования и калибровочного эталона 96 позволяет провести несложную калибровку системы на месте, причем не требуется производить демонтаж из системы и устанавливать в тестовый адаптер. В результате снижаются расходы на изготовления и обслуживание системы, так как исключена адаптация устройства предварительной обработки данных в тестовом приборе.

 

Очевидно, что возможно осуществить калибровку непосредственно калибровочного эталона 96 в случае, если он выполнен в виде отдельного блока, обратившись в сертифицированную калибровочную лабораторию.

 

На фиг.2. представлена структурная схема варианта осуществления предлагаемого индукционного измерительного устройства, который используют для регистрации дефектов в перемещаемом контролируемом образце и в котором применен способ цифровой демодуляции. Подобное устройство, не содержащее функцию самотестирования, раскрыто в публикации WO 2006/007826 А1. При этом проверяют контролируемый образец 13 в виде промышленной заготовки, в частности слитка, движущийся линейно с переменной скоростью v мимо датчика 11, причем скорость регистрируют посредством датчика 21 скорости, который, например, выдает сигнал, по существу пропорциональный скорости v. Сигнал, например, представляет собой сигнал прямоугольной формы (возможен также двухдорожечный сигнал, позволяющий различать движение вперед и назад), в котором, к примеру, на каждые 5 мм движения образца 13 содержится один импульс.

 

Датчик 11 имеет передатчик в виде передающей катушки 18 и улавливающую катушку 15. Передающая катушка 18 предназначена для того, чтобы посредством переменного электромагнитного поля по меньшей мере с одной несущей частотой наводить в образце 13 вихревые токи, которые в свою очередь наводят в улавливающей катушке 15 переменное напряжение, действующее в качестве сигнала датчика и содержащее в себе несущее колебание с несущей частотой передающей катушки 18. Причем когда дефект 23 попадает в эффективную ширину WB зоны чувствительности улавливающей катушки 15, наличие дефекта 23 способствует формированию амплитуды и фазы сигнала. Улавливающая катушка 15 предпочтительно выполнена в виде дифференциальной катушки, то есть в виде катушки с двумя обмотками, намотанными в противоположных направлениях, которая реагирует только на изменение электрических свойств контролируемого образца, вызванное наличием дефекта 23. Дифференциальные катушки предназначены, прежде всего, для обнаружения внезапных изменений в образце 13. Кроме того, в качестве улавливающей катушки 15 можно использовать абсолютную катушку, содержащую несколько обмоток, намотанных в одном направлении, и предназначенную, в частности, для обнаружения в контролируемом образце 13 протяженных гомогенных изменений. Напряжение передающей катушки 18 может быть создано, например, благодаря тому, что бинарный сигнал, вырабатываемый датчиком 44 времени, поступает в виде предварительно установленной частоты в генератор 48, формирующий из этого сигнала сигнал прямоугольной или синусоидальной формы, который проходит через формирователь 40 сигналов, и далее до подведения в передающую катушку 18 усиливается усилителем 42 мощности. Предпочтительно сигнал имеет синусоидальную форму. Обычно он имеет только одну несущую частоту, тем не менее, возможны измерения с несколькими несущими частотами и/или с несущими сигналами, значительно отличающимися от синусоидальных колебаний. Обычно несущая частота составляет от 1 кГц до 5 МГц.

 

Кроме того, существует возможность возбуждения передающей катушки цифровым сигналом на основе широтно-импульсной модуляции. В этом случае преимущество заключается в значительном снижении потерь мощности в возбуждающем каскаде.

 

До подведения в каскад 35 аналого-цифровых преобразователей сигнал датчика, принятый улавливающей катушкой 15, проходит полосовой фильтр 19 и регулируемый предварительный усилитель 17. При дискретизации сигнала в аналого-цифровом преобразователе 35 полосовой фильтр 19 выполняет функцию фильтра подавления помех наложения, кроме того, он предназначен для отфильтровывания высокочастотных и низкочастотных помех. Регулируемый предварительный усилитель 17 предназначен для доведения амплитуды аналогового сигнала датчика до амплитуды, оптимальной для каскада 35 аналого-цифровых преобразователей.

 

Каскад 35 аналого-цифровых преобразователей содержит два параллельно включенных аналого-цифровых преобразователя 32 и 34 с высоким разрешением не менее 16 бит, предпочтительно не менее 22 бит, которые обеспечивают не менее 500 аналого-цифровых преобразований в секунду. Аналого-цифровой преобразователь 32, 34 предпочтительно выполнен в виде сверхбыстродействующего аналого-цифрового преобразователя или аналого-цифрового преобразователя с регистром последовательных приближений.

 

Исполнение с двумя аналого-цифровыми преобразователями представляет собой вариант изобретения. Важно, чтобы выборка сигнала о наличии дефекта осуществлялась ортогонально. По существу возможна реализация данной функции с использованием только одного преобразователя.

 

Каскад 35 аналого-цифровых преобразователей запускается управляющим устройством 37, которое содержит упомянутый датчик 44 времени, генератор 48 косинусоидальных колебаний, включенный параллельно ему генератор 46 синусоидальных колебаний, а также делитель 30 частоты. На вход делителя 30 частоты поступает сигнал, сформированный генератором 48 косинусоидальных колебаний, частота которого равна несущей частоте сигнала, подаваемого в передающую катушку 18, а также сигнал генератора 46 синусоидальных колебаний, соответствующий сигналу генератора косинусоидальных колебаний, но сдвинутый по фазе на 90°. Делитель 30 частоты делит на целое число n частоту каждого из этих двух сигналов. Соответствующий выходной сигнал с уменьшенной частотой предназначен для запуска аналого-цифрового преобразователя 32 и 34 соответственно. Выбор числа n для делителя 30 осуществляет цифровой процессор 60 обработки сигналов в зависимости от частоты дефектов, а именно отношения текущей скорости v движения контролируемого образца к эффективной ширине WB зоны чувствительности улавливающей катушки 15. Предпочтительно число n выбирают обратно пропорциональным основной частоте дефектов для того, чтобы частота следования импульсов запуска каскада 35 аналого-цифровых преобразователей была по меньшей мере приблизительно пропорциональна основной частоте дефектов. Таким образом, если при первом приближении эффективная ширина WB зоны чувствительности постоянна, то при более высокой скорости v движения контролируемого образца и, следовательно, более высокой частоте дефектов аналоговый сигнал датчика соответственно дискретизируется чаще.

 

Делитель 30 предпочтительно выполнен в виде так называемого PAL-элемента (ПМЛ-схемы), чтобы обеспечить поступление запускающего сигнала в каскад 35 аналого-цифровых преобразователей по возможности без задержки, то есть синхронно с выходным сигналом генератора 48 косинусоидальных колебаний и генератора 46 синусоидальных колебаний, и без фазовых флуктуации.

 

За счет соответствующего сдвига фаз двух входных сигналов делителя 30 происходит запуск обоих аналого-цифровых преобразователей 32, 34 с постоянным сдвигом фаз 90°. Таким образом, аналоговый сигнал датчика можно оценить по двум компонентам, а именно по амплитуде и по фазе. Очевидно, запаздывание по фазе между запускающим сигналом каскада 35 аналого-цифровых преобразователей и сигналом передающей катушки 18 должно быть минимальным, кроме того, следует исключить так называемые фазовые флуктуации, то есть фазовые соотношения по времени постоянны.

 

Указанное управляющее устройство 37 обеспечивает дискретизацию аналогового сигнала датчика каждым аналого-цифровым преобразователем 32 и 34 не более одного раза на полную волну несущего колебания (в этом случае n равно 1). Тем не менее, в зависимости от текущей частоты дефектов, то есть скорости v движения контролируемого образца, n может быть значительно больше 1, вследствие чего дискретизация происходит только в каждой n-ной полной волне несущего колебания.

 

Как указано выше, важно, чтобы выборка осуществлялась ортогонально. Если выборку осуществляют при 0° и 90°, то получают комплексные компоненты сигнала дефекта. При 180° и 270° получают равные, но инверсные компоненты. Таким образом, путем инвертирования данных компонентов формируют среднее значение и работают с более высокой частотой дискретизации. Тем самым обеспечено преимущество в отношении шума и расчета параметров входного фильтра.

 

Демодулированный цифровой двухканальный выходной сигнал каскада 35 аналого-цифровых преобразователей проходит через полосовой фильтр 52, представленный процессором 60 обработки сигналов и предназначенный для отфильтровывания помех, лежащих за пределами полосы частот сигнала дефекта. В связи с этим предельную частоту фильтра верхних частот (программного фильтра) предпочтительно выбирают так, чтобы она составляла менее четверти частоты дефектов, а предельную частоту фильтра нижних частот - так, чтобы она по меньшей мере в два раза превышала частоту дефектов с тем, чтобы исключить вероятность отфильтровывание тех составляющих сигнала, в которых содержится информация о дефекте.

 

Цифровой полосовой фильтр 52 синхронизирован с частотой дискретизации каскада 35 аналого-цифровых преобразователей, а именно с частотой следования импульсов запуска. Это дает следующее значительное преимущество. Предельные частоты полосового фильтра при изменении частоты дефектов, то есть при изменении скорости v движения контролируемого образца, автоматически затягиваются вместе с частотой дефектов, так как предельные частоты цифрового полосового фильтра пропорциональны тактовой частоте, а тактовая частота через частоту дискретизации, задаваемую управляющим устройством 37, автоматически согласуется с изменением частоты дефектов.

 

Аналогичным образом происходит изменение несущей частоты передатчика. Таким образом, упрощена цифровая фильтрация на различных ступенях фильтрации.

 

Возможно введение информации по эффективной ширине WB зоны чувствительности, необходимой для определения основной частоты дефектов, в процессор 60 обработки сигналов вручную либо эту информацию обеспечивает непосредственно датчик 11, например, как описано в публикации ЕР 0734522 В1.

 

Очевидно, что измерительная система аналогичным образом реагирует на изменения частоты дефектов, связанные с заменой улавливающей катушки 15 другой улавливающей катушкой с отличающейся эффективной шириной WB зоны чувствительности, при этом скорость v движения контролируемого образца остается постоянной.

 

Полезный сигнал, полученный после цифровой фильтрации посредством полосового фильтра 52 известным способом, подвергают обработке в блоке 50 обработки данных для регистрации дефектов 23 контролируемого образца 13 и определения их местоположения, причем, как правило, используют как информацию, содержащуюся в амплитуде сигнала дефекта, так и информацию, содержащуюся в фазе этого сигнала.

 

В частности, при относительно высоких значениях n, а именно в случае дискретизации относительно небольшого числа полных волн несущего колебания, между интервалами дискретизации, например, можно отключать или привести в нейтральное состояние передающую катушку 15 и/или электронные устройства обработки данных, в частности процессор 60 обработки сигналов, с целью уменьшения потребления мощности, что особенно существенно при использовании переносных измерительных устройств.

 

Для выполнения функций контроля и калибровки, в соответствии с фиг.1, в процессор 60 встроен блок 62 самотестирования. Блок 62 самотестирования управляет переключающим устройством 66, содержащим три переключателя 63, 67, 69, что обеспечивает подачу сигнала для передающей катушки 18 датчика 11 подобно периодическому входному сигналу непосредственно на этап обработки сигнала, то есть на вход полосового фильтра 19, в обход передающей катушки 18 и улавливающей катушки 15.

 

На фиг.3-5 показан пример осуществления предлагаемого индукционного измерительного устройства, который используют для регистрации электропроводных частиц в текущей жидкости и в котором применен метод цифровой демодуляции. Такое устройство, за исключением функции самотестирования, раскрыто в ранее неопубликованной немецкой патентной заявке с шифром документа 102007039434.0. По существу в данном случае обработка сигналов и осуществление функции самотестирования происходит аналогично варианту изобретения, раскрытому выше и изображенному на фиг.2.

 

Согласно фиг.4 вокруг трубы 10 расположены первая индукционная улавливающая катушка 12 и вторая индукционная улавливающая катушка 14, размещенная (в осевом направлении) на некотором расстоянии от первой, так что текущая в трубе 10 жидкость 16 проходит через катушки 12 и 14 в осевом направлении. Осевое расстояние между двумя катушками 12, 14 и осевой размер катушек 12, 14 составляет, например, 2 мм. С внешней стороны двух улавливающих катушек 12, 14 расположена передающая катушка 18, установленная по отношению к обеим катушкам 12, 14 соосно и имеющая больший по сравнению с ними диаметр. Передающая катушка 18 имеет такой осевой размер, что обе улавливающие катушки 12, 14 полностью размещены внутри передающей катушки 18. Предпочтительно осевой размер передающей катушки 18 по меньшей мере в два раза превышает осевой размер устройства, состоящего из улавливающих катушек 12, 14, который равен сумме размеров катушек 12, 14 и расстояния между ними. Катушки 12, 14,18 расположены в корпусе 22, окружающем трубу 10, и образуют датчик 11. Как правило, труба 10 является частью контура циркуляции машинной смазки, причем в этом случае жидкостью 16 является, например, смазка, в которой имеются металлические частицы, а именно продукты истирания движущихся деталей машины. Обычно расход смазки в основном потоке составляет 10 л/мин. При существенно более высоких значениях расхода целесообразно осуществлять измерения не в основном, а в побочном потоке.

 

Согласно фиг.5 две улавливающие катушки 12, 14 включены субтрактивно в виде дифференциальной катушки 15, то есть они расположены встречно, вследствие чего в обеих катушках 12, 14 напряжения имеют одинаковую абсолютную величину, но противоположные знаки. В целом передающая катушка 18 и улавливающие катушки 12, 14 образуют трансформаторное устройство, причем передающая катушка 18 образует первичную сторону, а улавливающие катушки 12, 14 - вторичную сторону. Сердечник трансформатора в таком устройстве сформирован проходящими через катушки 12, 14, 18 материалами или средами, а именно воздухом, корпусом 22, трубой 10 и жидкостью 16 с частицами 20.

 

Разность полного сопротивления катушек 12, 14, вызванная наличием частиц 20, а именно разность полного сопротивления двух катушек 12, 14, причиной которой является присутствие в данный момент в одной из двух катушек 12, 14 частицы 20 (размер частицы 20 значительно меньше расстояния между катушками 12, 14), отображается в виде сигнала, выдаваемого катушками 12 и 14.

 

На фиг.3 показан пример конструкции предлагаемого вихретокового измерительного устройства, в котором использован датчик 11.

 

Передающая катушка 18 предназначена для того, чтобы посредством переменного электромагнитного поля по меньшей мере с одной несущей частотой наводить в частицах 20 вихревые токи, которые в свою очередь наводят в улавливающей катушке 15, выполненной в виде дифференциальной катушки, переменное напряжение, которое действует в качестве сигнала датчика и содержит в себе несущее колебание с несущей частотой передающей катушки 18, причем если частица 20 попадает в эффективную ширину WB зоны чувствительности улавливающей катушки 15, ее наличие способствует формированию амплитуды и фазы сигнала.

 

Напряжение передающей катушки 18 создано, например, благодаря тому, что бинарный сигнал, вырабатываемый датчиком 44 времени, поступает в виде предварительно установленной частоты в генератор 48, формирующий из этого сигнала сигнал прямоугольной или синусоидальной формы, который проходит через формирователь 40 сигналов, а далее до подведения в передающую катушку 18 усиливается усилителем 42 мощности. Предпочтительно сигнал имеет синусоидальную форму. Обычно он имеет только одну несущую частоту, тем не менее, возможны измерения с несколькими несущими частотами и/или с несущими сигналами, значительно отличающимися от синусоидальных колебаний. Предпочтительно несущая частота составляет от 5 кГц до 1 МГц.

 

До подведения в каскад 35 аналого-цифровых преобразователей сигнал датчика, принятый улавливающей катушкой 15, проходит полосовой фильтр 19 и регулируемый предварительный усилитель 17. При дискретизации сигнала в аналого-цифровом преобразователе 35 полосовой фильтр 19 выполняет функцию фильтра подавления помех наложения, кроме того, он предназначен для отфильтровывания низкочастотных помех посредством фильтра верхних частот. Регулируемый предварительный усилитель 17 предназначен для доведения амплитуды аналогового сигнала датчика до амплитуды, оптимальной для каскада 35 аналого-цифровых преобразователей.

 

Каскад 35 аналого-цифровых преобразователей содержит два параллельно включенных аналого-цифровых преобразователя 32 и 34 с высоким разрешением не менее 16 бит, предпочтительно не менее 22 бит, которые обеспечивают не менее 500 аналого-цифровых преобразований в секунду. Аналого-цифровой преобразователь 32, 34 предпочтительно выполнен в виде сверхбыстродействующего аналого-цифрового преобразователя или аналого-цифрового преобразователя с регистром последовательных приближений.

 

Тем не менее, если компенсация напряжения разбаланса осуществляется посредством дополнительного аналого-цифрового преобразователя и вычитателя, то достаточным является разрешение аналого-цифрового преобразователя 12 бит.

 

Каскад 35 аналого-цифровых преобразователей запускается управляющим устройством 37, которое содержит упомянутый датчик 44 времени, генератор 48 косинусоидальных колебаний, включенный параллельно ему генератор 46 синусоидальных колебаний, а также делитель 30 частоты. На вход делителя 30 частоты поступает сигнал, сформированный генератором 48 косинусоидальных колебаний, частота которого равна несущей частоте сигнала, подаваемого в передающую катушку 18, а также сигнал генератора 46 синусоидальных колебаний, соответствующий сигналу генератора косинусоидальных колебаний, но сдвинутый по фазе на 90°. Делитель 30 частоты делит на целое число n частоту каждого из этих двух сигналов. Соответствующий выходной сигнал с уменьшенной частотой предназначен для запуска аналого-цифрового преобразователя 32 и 34 соответственно. Выбор числа n для делителя 30 осуществляет цифровой процессор 60 обработки сигналов в зависимости от частоты прохождения частиц, а именно отношения текущей скорости v потока жидкости 16, то есть скорости движения частиц 20, к эффективной ширине WB зоны чувствительности улавливающей катушки 15. Предпочтительно число n выбирают обратно пропорциональным основной частоте прохождения частиц для того, чтобы частота следования импульсов запуска каскада 35 аналого-цифровых преобразователей была по меньшей мере приблизительно пропорциональна основной частоте следования частиц. Таким образом, если при первом приближении эффективная ширина WB зоны чувствительности постоянна, то при более высокой скорости v потока частиц и, следовательно, более высокой частоте прохождения частиц аналоговый сигнал датчика соответственно дискретизируется чаще.

 

Предпочтительно делитель 30 выполнен в виде так называемого PAL-элемента (ПМЛ-схемы), чтобы обеспечить поступление запускающего сигнала в каскад 35 аналого-цифровых преобразователей по возможности без задержки, то есть синхронно с выходным сигналом генератора 48 косинусоидальных колебаний и генератора 46 синусоидальных колебаний, и без фазовых флуктуаций.

 

За счет соответствующего сдвига фаз двух входных сигналов делителя 30 происходит запуск обоих аналого-цифровых преобразователей 32, 34 с постоянным сдвигом фаз 90°. Таким образом, аналоговый сигнал датчика можно оценить по двум компонентам, а именно по амплитуде и по фазе. Очевидно, запаздывание по фазе между запускающим сигналом каскада 35 аналого-цифровых преобразователей и сигналом передающей катушки 18 должно быть минимальным, кроме того, следует исключить так называемые фазовые флуктуации, то есть фазовые соотношения по времени постоянны.

 

Указанное управляющее устройство 37 обеспечивает дискретизацию аналогового сигнала датчика каждым аналого-цифровым преобразователем 32 и 34 не более одного раза на полную волну несущего колебания (в этом случае n равно 1). Тем не менее, в зависимости от текущей частоты прохождения частиц, то есть скорости v движения частиц, n может быть значительно больше 1, вследствие чего дискретизация происходит только в каждой n-ной полной волне несущего колебания.

 

Однако, так как во всех случаях на каждый аналого-цифровой преобразователь 32, 34 дискретизация происходит не более одного раза за полную волну, в результате такой субдискретизации из цифрового сигнала выделяется частота несущего колебания, то есть несущая частота. Таким образом, посредством субдискретизации происходит демодуляция аналогового сигнала датчика.

 

Предпочтительно число n выбирают так, что в интервале времени, в течение которого фиксируется существенный сигнал частицы, а именно в интервале времени, в течение которого частица 20 проходит через эффективную ширину WB зоны чувствительности улавливающей катушки 15, то есть в интервале времени, который по существу соответствует инверсии основной частоты прохождения частиц, каждый аналого-цифровой преобразователь 32 или 34 осуществляет по меньшей мере 5, предпочтительно по меньшей мере 20 выборок, чтобы получить информацию, содержащуюся в сигнале частицы, достаточном для точного обнаружения частицы. Тем не менее, в течение такого интервала времени, как правило, достаточно осуществить не более 50, максимально 100 выборок, минимально 10 выборок.

 

Частоту несущего колебания следует выбирать так, чтобы она превышала частоту прохождения частиц не менее чем в десять раз, иначе сигнал частицы переносится слишком малым количеством полных волн несущего колебания, и регистрация частиц становится проблематичной.

 

Демодулированный цифровой двухканальный выходной сигнал каскада 35 аналого-цифровых преобразователей проходит через полосовой фильтр 52, представленный процессором 60 обработки сигналов и предназначенный для отфильтровывания помех, лежащих за пределами полосы частот сигнала частицы. В связи с этим предельную частоту фильтра верхних частот предпочтительно выбирают так, что она составляет менее четверти частоты прохождения частиц, а предельную частоту фильтра нижних частот - так, чтобы она по меньшей мере в два раза превышала частоту прохождения частиц, чтобы исключить вероятность отфильтровывание тех составляющих сигнала, в которых содержится информация о прохождении частиц.

 

Цифровой полосовой фильтр 52 синхронизирован с частотой дискретизации каскада 35 аналого-цифровых преобразователей, а именно с частотой следования импульсов запуска. Это дает следующее значительное преимущество. Предельные частоты полосового фильтра при изменении частоты прохождения частиц, то есть при изменении скорости v движения частиц, автоматически затягиваются вместе с частотой прохождения частиц, так как предельные частоты цифрового полосового фильтра пропорциональны тактовой частоте, а тактовая частота через частоту дискретизации, задаваемую управляющим устройством 37, автоматически согласуется с изменением частоты прохождения частиц.

 

Возможно введение информации по эффективной ширине WB зоны чувствительности, необходимой для определения основной частоты дефектов, в процессор 60 обработки сигналов вручную либо эту информацию обеспечивает непосредственно датчик 11, например, как описано в публикации ЕР 0734522 В1.

 

Очевидно, что измерительная система аналогичным образом реагирует на изменения частоты прохождения частиц, связанные с заменой улавливающей катушки 15 другой улавливающей катушкой с отличающейся эффективной шириной WB зоны чувствительности, при этом скорость v движения частиц остается постоянной.

 

В частности, при относительно высоких значениях n, а именно в случае дискретизации относительно небольшого числа полных волн несущего колебания, между интервалами дискретизации, например, можно отключать или привести в нейтральное состояние передающую катушку 18 и/или электронные устройства обработки данных, в частности процессор 60 обработки сигналов, с целью уменьшения потребления мощности, что особенно существенно при использовании переносных измерительных устройств.

 

Полезный сигнал, полученный после цифровой фильтрации посредством полосового фильтра 52, подвергают обработке в блоке 50 обработки данных для регистрации прохождения частиц 20, причем используют как информацию, содержащуюся в амплитуде сигнала обнаружения частицы, так и информацию, содержащуюся в фазе этого сигнала.

 

Блок 50 обработки данных предпочтительно выполнен с возможностью осуществления подсчета зарегистрированных частиц, что позволяет сделать вывод о концентрации частиц в жидкости 16, а также при необходимости о состоянии машины.

 

По существу наличие разности сопротивления (отдельные катушки дифференциальной катушки на практике никогда не бывают одинаковыми) приводит к возникновению так называемого напряжения разбаланса дифференциальной катушки, которое может превышать собственно сигнал дефекта, например, на несколько порядков (в частности, в 100 30000 раз). В результате амплитуда сигнала улавливающей катушки превышает амплитуду собственно полезного сигнала, что приводит к предъявлению высоких требований к электронным схемам, в частности к аналого-цифровому преобразователю, в особенности к его разрешению.

 

Для выполнения функций контроля и калибровки, в соответствии с фиг.1, в процессор 60 встроен блок 62 самотестирования. Блок 62 самотестирования управляет переключающим устройством 66, содержащим три переключателя 63, 67, 69, что обеспечивает подачу сигнала для передающей катушки 18 датчика 11 подобно периодическому входному сигналу непосредственно на этап обработки сигнала, то есть на вход полосового фильтра 19, в обход передающей катушки 18 и улавливающей катушки 15.

Имя изобретателя: ХЕЛЬЦЛЬ Роланд (DE)
Имя патентообладателя: ПРЮФТЕХНИК Дитер Буш АГ (DE)
Почтовый адрес для переписки: 191002, Санкт-Петербург, а/я 5, ООО "Ляпунов и партнеры"
Дата начала отсчета действия патента: 17.05.2010

Разместил статью: miha111
Дата публикации:  1-11-2014, 15:18

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Имя не указано

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Способ уменьшения потерь олефинов при удалении диоксида углерода из потока олефинов после реакции дегидрирования
Изобретение относится к способу проведения реакций дегидрирования с последующей абсорбционной очисткой газов, при этом за абсорбционной очисткой газов следует стадия снятия давления в резервуаре мгновенного испарения при высоком давлении, который снабжен массообменными элементами, причем эту стадию проводят при использовании горючего газа, протекающего через массообменные элементы навстречу направлению силы тяжести, который проходит через резервуар мгновенного испарения при высоком давлении...

Способ регулирования выходного сигнала сварочного аппарата с электроприводом
Способ и система регулирования выходного сигнала сварочного аппарата, характеризуемого максимальным выходным напряжением разомкнутой цепи и содержащего вращающийся двигатель, трехфазный преобразователь, выпрямительный мост, имеющий набор электронных средств переключения для подачи тока на выход в соответствии с углами запуска средств переключения в течение соответствующей половины цикла, средство определения выходного тока, средство определения выходного напряжения, и микропроцессорное...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: В море можно утонуть? (нет или да)
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Способ уменьшения потерь олефинов при удалении диоксида углерода из потока олефинов после реакции дегидрирования

Способ уменьшения потерь олефинов при удалении диоксида углерода   из потока олефинов после реакции дегидрирования Изобретение относится к способу проведения реакций дегидрирования с последующей абсорбционной очисткой газов, при этом за абсорбционной очисткой…
читать статью
Технология сварки и сварочное оборудование
Анод генератора дуговой плазмы

Анод генератора дуговой плазмы Изобретение относится к области плазменной техники. Генератор дуговой плазмы с многоступенчатой подачей газа содержит катод и анод. Анод выполнен, по…
читать статью
Технология сварки и сварочное оборудование
Автономный источник питания

Автономный источник питания Ноу-хау разработки, а именно данное изобретение автора относится к автономным источникам питания и может найти применение при сварочных работах в…
читать статью
Технология сварки и сварочное оборудование
Способ возбуждения сварочной дуги и устройство для его осуществления

Способ возбуждения сварочной дуги и устройство для его осуществления Ноу-хау разработки, а именно данное изобретение автора относится к электротехнике, а именно к способу и устройствам для питания сварочной дуги…
читать статью
Технология сварки и сварочное оборудование
Способ регулирования выходного сигнала сварочного аппарата с электроприводом

Способ регулирования выходного сигнала сварочного аппарата с электроприводом Способ и система регулирования выходного сигнала сварочного аппарата, характеризуемого максимальным выходным напряжением разомкнутой цепи и…
читать статью
Технология сварки и сварочное оборудование
Устройство для электронно-лучевой сварки

Устройство для электронно-лучевой сварки Назначение: при сварке металлов в низком вакууме. Сущность изобретения: устройство, состоящее из экрана 1, собранного из двух экранов 2 и 3,…
читать статью
Технология сварки и сварочное оборудование
Дисперсно-упрочненный материал для электродов контактной сварки

Дисперсно-упрочненный материал для электродов контактной сварки Цель изобретения - создание материала с высокими значениями твердости, электропроводности и температуры рекристаллизации для электродов точечной…
читать статью
Технология сварки и сварочное оборудование
Способ формирования внешних характеристик сварочных генераторов и устройство для его осуществления

Способ формирования внешних характеристик сварочных генераторов и устройство для его осуществления Изобретения относятся к электротехнике, в частности к системам регулирования электрических величин сварочных генераторов, и могут найти применение в…
читать статью
Технология сварки и сварочное оборудование
Устройство для сварки световым лучом

Устройство для сварки световым лучом Изобретение относится к сварке и пайке и может быть использовано для получения неразъемных соединений пайкой или сваркой изделий, используемых в…
читать статью
Технология сварки и сварочное оборудование
Способ сварки рельсовых стыков

Способ сварки рельсовых стыков Ноу-хау разработки, а именно данное изобретение автора относится к области сварки, а именно к сварке рельсов железнодорожного пути. На кромках…
читать статью
Технология сварки и сварочное оборудование
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
pi31453_53
Публикаций: 9
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
Patriotjpa
Публикаций: 0
Комментариев: 0
kapriolree
Публикаций: 0
Комментариев: 0
gustavoytd
Публикаций: 0
Комментариев: 0
Mihaelsjp
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru