Металлопрокат получают путем прокатки, под которой подразумевают пластическое сжатие металлической заготовки на прокатном стане путем прокатывания между валами управляемыми электродвигателями, интегрированными в шину стана....
ИЗОБРЕТЕНИЕ Заявка на изобретение RU2014108526/02, 06.03.2014
ИЗОБРЕТЕНИЕ Патент Российской Федерации RU2544981
Область деятельности(техники), к которой относится описываемое изобретение
Изобретение относится к черной металлургии, а именно к производству конструкционной стали повышенной обрабатываемости резанием для изготовления деталей в машиностроении.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Известна сталь АС35Г2, содержащая, мас.%:
углерод - 0,32-0,39;
кремний - 0,17-0,37;
марганец - 1,35-1,65;
хром - 1,0-1,3;
rnrnrnrnrnrnrnrnrn
фосфор - не более 0,04;
сера - 0,08-0,13;
свинец - 0,15-0,30;
железо и примеси - остальное. [1]
Эта сталь наиболее близка к предлагаемой по механическим свойствам, составу и назначению и взята за прототип.
Недостатком этой стали является преобладание сильно деформированных пленочных включений, которые приводят к понижению физико-механических и технологических свойств металла и сдерживают возможность повышения обрабатываемости, а также токсичность свинца, относящегося к элементам первого класса опасности. Для производства свинецсодержащей стали в сталеплавильных цехах применяются достаточно сложные устройства для аспирации образующихся газов. В прокатных цехах задача защиты от соединений свинца практически не разрешима.
Основная техническая задача изобретения состоит в обеспечении повышенных прочностных свойств при незначительном снижении пластических свойств относительно механических свойств аналогичной свинецсодержащей стали, улучшение экологической обстановки в металлургической промышленности, улучшение обрабатываемости металлопроката у потребителя.
Техническое решение задачи достигается за счет того, что предлагается автоматная висмутсодержащая сталь, содержащая, мас.%:
углерод - 0,32-0,42;
кремний - не более 0,35;
rnrnrnrnrnrnrnrnrn
марганец - 1,4-1,8;
фосфор - не более 0,04;
сера - 0,08-0,4;
алюминий - не более 0,03;
висмут - 0,03-0,12;
кислород - 0,002-0,02;
железо и примеси - остальное.
Предлагается режим термообработки калиброванного проката, включающий отпуск при температуре 400-450°С, выдержку в течение 4-6 часов и охлаждение на воздухе.
Задача решается путем легирования серой и висмутом, а также формирования в металле равномерно распределенных сульфидных включений эллипсовидной формы 2,1-2,2 балла по шкалам SEP 1572, оптимальной микроструктуры стали и снятием напряжений холоднодеформированного проката при отпуске. Объем сульфидных включений зависит от содержания серы, а морфология - от степени раскисления стали и содержания в ней кислорода, а также от скорости охлаждения при кристаллизации. Оптимальная форма сульфидов для повышения обрабатываемости стали - округлые, близкие к глобулярным, слабодеформированные. Для этого обеспечивается содержание общего кислорода - 0,002-0,020% с целью получения слабораскисленной стали. Наличие близких к глобулярным, слабодеформированных сульфидов в металле хорошо согласуется с содержанием активного кислорода и остаточного алюминия:
чем выше содержание кислорода с меньшим содержанием остаточного алюминия, тем больше в металле глобулярных сульфидов.
Максимальное содержание алюминия 0,03% ограничено снижением обрабатываемости деталей.
Содержание углерода 0,32-0,42% обеспечивает получение необходимых механических характеристик. Для достижения желательных прочностных свойств предлагаемой стали содержание углерода должно быть, по меньшей мере, 0,32%. Несмотря на то что повышение содержания углерода в стали обеспечивает повышение ее прочности и износостойкости, следует ограничить содержание углерода в ней величиной 0,42%, чтобы не допустить существенного снижения пластичности.
Содержание марганца и серы обеспечивает соотношение Mn/S, равное 5,0- 22,0, что приводит практически к полному связыванию серы в тугоплавкий сульфид марганца MnS и исключает образование легкоплавкой сульфидной эвтектики. Это позволяет избежать красноломкости и горячеломкости стали при горячей обработке давлением. Кроме того, марганец с содержанием 1,4-1,8% совместно с углеродом обеспечивает необходимый уровень прочностных свойств. Повышенная обрабатываемость достигается в первую очередь благодаря высокому содержанию серы (0,08-0,4%). Количественное содержание серы ниже 0,08% приводит к снижению приемлемого уровня обрабатываемости среднеуглеродистых сталей.
Незначительное содержание фосфора благоприятно влияет на улучшение процесса стружкообразования и качества обрабатываемой поверхности. При концентрации фосфора, превышающей значение 0,04%, проявляется его негативное влияние на пластичность и хладноломкость металла.
Минимальное содержание висмута в стали 0,03% обусловлено достижением обрабатываемости на уровне свинецсодержащей стали. Максимальное содержание 0,12% - экспериментально подобрано для оптимальных условий разливки на МНЛЗ, соблюдения требований по предельно-допустимой концентрации (ПДК) висмута в воздухе (установлена на уровне 0,5 мг/м3). Введение висмута обеспечивает глобуляризацию сульфидных включений. Глобулярные (слабодеформированные) включения не оказывают отрицательного влияния на свойства стали в отличие от вытянутых вдоль направления прокатки сульфидных включений сернистых автоматных сталей.
rnrnrnrnrnrnrnrnrn
На фигуре 1 представлена фотография микроструктуры (поперечное сечение образца) модифицированной автоматной стали одной из плавок с величиной зерна 8-9 номер при 100-кратном увеличении с установленной масштабной линейкой длиной 400 мкм.
На фигуре 2 представлена фотография микроструктуры (поперечное сечение образца) с соотношением зернистого и пластинчатого перлита (преобладание пластинчатого перлита), с равномерным распределением сульфидных включений при 500-кратном увеличении с установленной масштабной линейкой длиной 90 мкм.
На фигуре 3 изображено распределение и форма сульфидных включений в модифицированной автоматной стали одной из плавок в поверхностном слое продольного шлифа при 100-кратном увеличении.
На фигуре 4 изображено распределение и форма сульфидных включений в поверхностном слое продольного шлифа модифицированной автоматной стали при 500-кратном увеличении.
На фигуре 5 изображено распределение и форма сульфидных включений в образце одной из плавок модифицированной автоматной стали в центральной части продольного шлифа при 100-кратном увеличении.
На фигуре 6 изображены распределение и форма сульфидных включений в образце одной из плавок в центральной части продольного шлифа при 500-кратном увеличении.
Практический пример выполнения.
Выплавка заявленной марки стали проводится на ЗАО "ОМЗ" в сталеплавильном агрегате. Раскисление стали алюминием проводят на сливе из сталеплавильного агрегата в ковш, вводят в донную зону ковша компоненты для раскисления при оптимальном соотношении [Mn]/[Si] 3. В печи-ковше ведут внепечную обработку при продувке аргоном с наведением известково-глиноземистого шлака, вводят порошковую проволоку с наполнителем элементарная сера после загущения шлака магнезитовым порошком. В последующем вводят проволоку с наполнителем - висмут (MnBi). Разливку проводят на МНЛЗ способом "под уровень". Получают сталь в виде непрерывнолитой заготовки.
Заготовку прокатывают на станах горячей прокатки по технологическим инструкциям и схемам прокатки ЗАО "ОМЗ". Затем подкат калибруют на волочильных станах усилием 10,15 тонн в готовый профиль - круги от 11 до 43 мм или на волочильном стане "Шумаг"- круги от 5 до 10 мм (в зависимости от сечения готового профиля и технологии производства). Отпуск с целью снятия напряжений, полученных при холодной деформации, проводят при 400-450°С с выдержкой 4 - 6 часов в зависимости от массы садки металлопроката в термопечь.
Произвели три плавки с предложенным составом стали АМ35Г2. Полученный химический состав приведен в таблице 1.
Оценку механических свойств и структуры стали АМ35Г2 проводили в лаборатории контрольных испытаний ЗАО "ОМЗ". Испытания механических свойств проводились на 25-тонной разрывной машине "QUASAR 250", испытание твердости проводилось на твердомере типа ТШ-2М по методу Бринелля. Результаты исследования механических свойств предлагаемой калиброванной стали приведены в таблице 2. Из опытных плавок были изготовлены партии профилей различных типоразмеров. Некоторый разброс прочностных свойств обусловлен степенью обжатий при волочении профилей разных размеров.
Микроструктуру стали, форму и распределение сульфидных включений исследовали на микроскопе "NEOPHOT-21". Микроструктура стали однородная феррито-перлитная с величиной зерна 8-9 номер. Величину зерна оценивали на поперечном шлифе калиброванного профиля при 100-кратном увеличении по ГОСТ 5639 (фиг.1), соотношение зернистого перлита к пластинчатому (преобладание пластинчатого перлита) оценивали на поперечном шлифе при 500-кратном увеличении по ГОСТ 8233 (фиг.2).
Оценка формы неметаллических включений проводилась по шкалам SEP 1572. Она показала наличие равномерно распределенных, обособленных, слабодеформированных сульфидов эллипсовидной формы 2.1-2.2 балла, отсутствие скоплений пленочных включений, снижающих физико-механические и технологические свойства металла. Отношение длины частиц сульфидов к их толщине в поверхностном слое 2-4 (фиг.3, 4) в центре сечения составляет 3-7 (фиг.5, 6).
Полученная форма сульфидных включений обеспечивает уменьшение адгезионных взаимодействий обрабатываемого материала и инструмента и как результат обеспечение шероховатости поверхности и интенсивности изнашивания режущего инструмента (стойкости инструмента) по сравнению со свинецсодержащей сталью.
Опытные испытания металлопроката из предлагаемой стали проводили на базе ОАО "АВТОВАЗ" с целью уменьшить затраты на производство и снизить использование вредных веществ в деталях автомобиля. Применили несколько видов механической обработки - сверление, фрезерование, точение. Получены следующие результаты: стружка хорошо ломается, образуя небольшие фракции, которые легко удаляются из зоны резания; стойкость инструмента и производительность оборудования увеличивается на 10-20%; полученные детали соответствуют требованиям чертежа.
Предложенный химический состав, режим термообработки позволяет получить металлопрокат из стали повышенной прочности и износостойкости с незначительным снижением пластичности относительно уровня свинецсодержащей стали, повышенной обрабатываемости, а также улучшение экологической обстановки в металлургической промышленности.
7
8
Источники информации:
1. ГОСТ 1414-75, Госстандарт России, М., 1992, с. 4-5,9
Формула изобретения
Автоматная сталь, содержащая углерод, кремний, марганец, серу, фосфор, алюминий, железо и примеси, отличающаяся тем, что она дополнительно содержит висмут и кислород, при следующем соотношении компонентов, мас. %:
углерод
0,32-0,42
кремний
не более 0,35
марганец
1,4-1,8
фосфор
не более 0,04
сера
0,08-0,4
алюминий
не более 0,03
висмут
0,03-0,12
кислород
0,002-0,020
железо и примеси
остальное
при этом она имеет равномерно распределенные слабодеформированные сульфидные включения эллипсовидной формы 2,1-2,2 балла.
Имя изобретателя: Волосков Александр Дмитриевич (RU) Имя патентообладателя: Закрытое акционерное общество "Омутнинский металлургический завод" (RU) Почтовый адрес для переписки: 612740, Кировская обл., г. Омутнинск, ул. Коковихина, 2, ЗАО "Омутнинский металлургический завод", Самоуковой Инге Григорьевне Дата начала отсчета действия патента: 06.03.2014
Разместил статью: miha111
Дата публикации: 26-03-2015, 12:18
Изобретение относится к получению гранулированного металла. Способ включает стадии, на которых агломераты, содержащие оксид железа и углеродсодержащий восстановитель, подают на под восстановительной плавильной печи типа печи с подвижным подом и нагревают агломераты для восстановления и расплавления оксида железа, охлаждают полученное гранулированное железо и выгружают из печи. Во время нагрева в восстановительной плавильной печи предусмотрена зона выше по потоку, обеспечивающая восстановление...
Изобретение относится к области металлургии, в частности к титановым материалам с высокой прочностью и обрабатываемостью. Титановый материал содержит железо 0,60 мас.% или менее и кислород 0,15 мас.% или менее, титан и неизбежные примеси - остальное. Материал имеет нерекристаллизованную структуру, сформированную путем обработки, сопровождающейся пластической деформацией, и рекристаллизованную структуру, сформированную путем отжига после указанной обработки, при этом средний размер...
Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное энергией электромагнитных волн, которые также существуют изначально и материей, которая состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.
Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.
То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.
Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.
Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально?
Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.
От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.
Вначале было то, что существует изначально и никем не создавалось. А это
- безграничное пространство космоса
- безграничное время протекания множества процессов различной длительности
- электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя