Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Электрическая машина постоянного тока
Изобретения Российской Федерации » Электроника и электротехника » Электрические машины
Электрическая машина постоянного тока Электрическая машина постоянного тока, содержащая станину статора, в которой на внутренней поверхности установлены постоянные магниты, а также ротор с обмоткой, валом и коллектором, установленный в станине статора с возможностью вращения так, чтобы магнитное поле обмотки взаимодействовало с магнитным полем постоянных магнитов, отличающаяся тем, что содержит по крайней мере один постоянный магнит, который выполнен в виде магнитного блока, содержащего центральное тело из магнитомягкого материала,...
читать полностью


» Изобретения Российской Федерации » Электроника и электротехника » Магниты и электромагниты
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
0
Добавить эту страницу в свои закладки на сайте »

Способ изготовления постоянного магнита


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2516005

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к способу изготовления постоянного магнита, который помещается в паз ротора для постоянного магнита встроенного двигателя, постоянному магниту, изготовленному в соответствии с этим способом, ротору, снабженному этим постоянным магнитом, и двигателю с внутренним постоянным магнитом (IPM), снабженному этим ротором.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Среди различных типов известных двигателей, включая двигатели постоянного тока (DC) без щеток, существует двигатель, имеющий встроенный ротор с постоянным магнитом, в котором множество постоянных магнитов располагают внутри сердечника ротора (этот тип двигателя известен как двигатель с внутренним постоянным магнитом (interior permanent magnet, IPM)) и будет ниже просто называться "двигатель IPM"). Двигатели IPM используются, например, как двигатели в гибридных транспортных средствах.

В двигателе, катушка формируется посредством обмотки наматываемой либо концентрированным или распределенным образом вокруг зубцов статора. Магнитный поток затем генерируется с применением постоянного тока к катушке, и магнитный момент и реактивный момент генерируются между этим магнитным потоком и магнитным потоком от постоянного магнита. Катушка, имеющая распределенную обмотку, имеет большее число магнитных полюсов, чем катушка с концентрированной обмоткой (нераспределенной обмоткой) так, что магнитный поток, который проникает в постоянный магнит ротора со стороны зубцов (или изменение в этом магнитном потоке) относительно непрерывный, когда ротор вращается. Поэтому, изменение плотности магнитного потока, когда ротор вращается, относительно мало. С другой стороны, у катушки с концентрированной обмоткой, изменение плотности магнитного потока относительно большое так, что вихревой ток генерируется, как правило, в постоянном магните, вызывая генерацию тепла постоянным магнитом. Это может привести к необратимому тепловому размагничиванию, что приводит к снижению магнитных свойств постоянного магнита.

С точки зрения приводных двигателей, используемых в современных гибридных транспортных средствах и электрических транспортных средствах, предпринимаются попытки, например, чтобы увеличить скорость вращения или число полюсов для удовлетворения спроса на лучшую выходную производительность (мощность) двигателя. Однако, увеличение скорости вращения и т.п. увеличивает изменение в магнитном поле, которое воздействует на магнит, в результате, как правило, генерируется вихревой ток. Тепловое размагничивание магнита, вызываемое генерируемым теплом, наоборот снижает производительность двигателя и продолжительность срока службы двигателя.

В публикации заявки на патент Японии No. 2005-198365 (JP-A-2005-198365), публикации заявки на патент Японии No. 2004-96868 (JP-A-2004-96868), и публикации заявки на патент Японии No. 2006-238565 (JP-A-2006-238565), например, делается попытка предотвратить генерацию вихревого тока, и, таким образом, предотвратить тепловое размагничивание, которое он вызывает, путем формирования постоянного магнита из множества отдельных частей, которые затем помещаются вместе в пазы ротора.

Изготовление постоянного магнита из множества отдельных частей, как описано, например, в JP-A-2005-198365, JP-A-2004-96868, и JP-A-2006-238565, является эффективным способом для подавления генерации вихревого тока, который может генерироваться в постоянном магните. Отдельные части, которые вместе формируют постоянный магнит, описанный в JP-A-2005-198365, JP-A-2004-96868, и JP-A-2006-238565, формируются одним из двух способов, таких как, i) каждая из отдельных частей изготавливается отдельно, или ii) постоянный магнит, формируемый для размера и формы внутри паза ротора, в который постоянный магнит помещается, подвергается механической обработке (т.е., разрезается) на множество отдельных частей. Последний способ обработки обычно используется с учетом эффективности изготовления и затрат на изготовление.

rnrnrnrnrnrnrnrnrn

Обработка, описанная выше, требует дорогостоящего режущего инструмента, например, который имеет алмазные частицы, приклеенные к внешней периферийной стороне твердосплавного (с карбидом вольфрама в качестве основного компонента) диска. Кроме того, этот режущий инструмент будет изнашиваться, и поэтому должен периодически заменяться, частота чего возрастает с увеличением числа резов (т.е., по мере того, как число отдельных частей, на которые разрезается постоянный магнит, возрастает). В результате этих и других факторов, техническое обслуживание повышение стоимости изготовления такой обработки являются основными проблемами.

Существуют также и другие проблемы с обработкой постоянного магнита путем разрезания. Например, ферритовый магнит или редкоземельный магнит, такой, как неодимовый (neodymium) магнит, который является постоянным магнитом, имеет металлическую структуру, формируемую из основных фаз S, которые делают вклад в магнитные свойства, и фаза R межзеренной границы, которая делает вклад в коэрцитивную силу, как показано на Фиг.9, которая является увеличенным видом структуры магнита. Когда постоянный магнит разделяется путем обработки, отдельные части формируются вдоль линии разреза, указанной линией L1 на чертеже. Как очевидно из чертежа, линия L1 формируется разрезанием, т.е. разделением, основных фаз S так, что разрезаемые основные фазы S являются меньшими по размеру, чем до разрезания. В результате, остаточная плотность магнитного потока (Br) становится меньше после разрезания.

вид линии разреза в структуре постоянного магнита в случае машинной резки в соответствии с известным уровнем техники.вид линии разреза в структуре постоянного магнита в случае машинной резки в соответствии с известным уровнем техники.

Кроме того, фаза R межзеренной границы выражает коэрцитивную силу по отношению к основным фазам S, которые она окружает. Однако, из-за того, что покрытие фазы R межзеренной границы, которая окружает основные фазы S, которые контактируют с поверхностью разреза, нарушается, таким образом, открывая основные фазы S, перемагничивание, как правило, легко возникает во внешнем магнитном поле. Перемагничивание приводит к уменьшению коэрцитивной силы всего магнита.

Это изобретение, таким образом, обеспечивает способ изготовления постоянного магнита, который чрезвычайно прост и недорог, и не уменьшает размер основных фаз, а также не разрушает покрытие окружающей фазы межзеренной границы. Изобретение также обеспечивает постоянный магнит, изготавливаемый в соответствии с этим способом, ротор, снабжаемый этим постоянным магнитом, и двигатель IPM, снабжаемый этим ротором.

Первый аспект изобретения относится к способу изготовления постоянного магнита, который помещается в пазы ротора двигателя IPM. Этот способ изготовления включает первый этап изготовления постоянного магнита, в общем, той же формы и размера, что форма и размер внутренней части паза путем штамповки магнитных частиц для постоянного магнита в фасонном штампе, второй этап формирования двух или более отдельных частей разламыванием постоянного магнита, и третий этап восстановления постоянного магнита путем совмещения поверхностей разлома смежных отдельных частей вместе.

Этот способ изготовления постоянного магнита может быть способом изготовления постоянного магнита, который помещается внутрь паза ротора, сформированного в роторе двигателя IPM. Более конкретно, этот способ изготовления может быть способом изготовления постоянного магнита, который разделяется на множество частей.

Вначале, фасонный штамп, который включает пуансон и матрицу и подобное, имеющий заранее назначенную полость, готов, магнитные частицы для постоянного магнита помещаются в этот фасонный штамп, и штамповка производится в атмосфере с нормальной температурой (этап 1).

Далее, тело, формируемое давлением, сформированное с заранее назначенной формой и размером, спекается, и полученное в результате спеченное тело разделяется на заранее назначенное число частей. Здесь в этом способе изготовления, на заранее назначенную часть спеченного тела (постоянный магнит) нажимают так, что спеченное тело разламывается вместо машинной резки посредством режущего инструмента, как в известном уровне техники (этап 2).

Как описано выше, когда постоянный магнит, который имеет металлическую структуру из основных фаз и фазы межзеренной границы, разламывается на заранее назначенные части, он разламывается вдоль фазы межзеренной границы, которая является относительно слабой (например, так называемый разлом межзеренной границы). Применяя этот способ разламывания, становится возможным уберечь остаточную плотность магнитного потока от уменьшения, уберечь коэрцитивную силу от уменьшения из-за перемагничивания, а также ликвидировать связанное с заменой режущего инструмента техническое обслуживание и уменьшить стоимость изготовления.

rnrnrnrnrnrnrnrnrn

После того как постоянный магнит, который должен помещаться в паз ротора, был разломан на заранее назначенное число частей, он затем восстанавливается совмещением поверхностей разлома отдельных частей вместе (этап 3).

Также, для того чтобы сохранить часть разлома в пределах назначенной области и осуществлять разламывание более эффективно, может быть обеспечена канавка в заранее назначенном положении на поверхности формируемого постоянного магнита.

Далее, когда канавка сформирована на поверхности постоянного магнита, постоянный магнит может быть разломан после того, как канавка была сделана.

Также, на этапе 1 постоянный магнит может быть сформирован посредством тел, отштампованных при малом давлении, которые штампуются и последовательно укладываются путем выполнения штамповки в фасонном штампе последовательно на нескольких этапах. Кроме того, по меньшей мере, тела, отштампованные при малом давлении, которые являются смежными друг другу, могут быть отштампованы из магнитных частиц различного материала.

Этот способ изготовления формирует один постоянный магнит путем укладывания множества тел, отштампованных при малом давлении, в то время как они последовательно штампуются, и приводит к обеспечению разламывания на граничных поверхностях, имеющих магнитные частицы, по меньшей мере, из этих тел, отштампованных при малом давлении, которые являются смежными друг другу, различными, выполненными из различного материала.

Тела, отштампованные при малом давлении, формируются путем инжектирования магнитного порошка в количестве, соответствующем числу операций штамповки, осуществляемых в фасонном штампе, и давлению штамповки. Этот магнитный порошок, используемый, чтобы сформировать заданное тело, отштампованное при малом давлении, из иного материала, чем магнитный порошок, используемый, чтобы сформировать предыдущее тело, отштампованное при малом давлении. Два тела, отштампованные при малом давлении, вместе образуют сформированное тело. Этот процесс повторяется для нескольких операций штамповки до получения сформированного тела, с размером и формой постоянного магнита. Тело вынимается из штампа и помещается в печь для спекания, после чего разламывается.

Когда постоянный магнит спекается, остаточное напряжение возникает на граничной поверхности тел, отштампованных при малом давлении, которые сделаны из иного материала, из-за разницы в количестве, которое заключают тела, отштампованные при малом давлении. В результате, граничная поверхность является слабым местом при разламывании. Также, граничная поверхность является поверхностью формирования так, что сила сцепления между граничными поверхностями слабее, чем соединяющая сила между основными фазами и фазами межзеренной границы в телах, формируемых малым давлением. В результате, эти граничные поверхности, как правило, легко ломаются.

Также, на этапах 2 и 3 как описано выше, каждая из отдельных частей может присоединяться смолой или формироваться друг с другом смолой путем размещения постоянного магнита в контейнере, заполненном смолой, и затем разламывания постоянного магнита в этом контейнере. В качестве альтернативы, на этапах 2 и 3, каждая из отдельных частей может присоединиться смолой или прессоваться друг с другом смолой путем заполнения контейнера смолой, в то же время, когда постоянный магнит разламывается в контейнере.

После того как постоянный магнит разломан и затем восстановлен путем совмещения отдельных частей вместе, отдельные части должны быть присоединены или сформированы друг с другом перед намагничиванием так, что устройство магнита не нарушается силой намагничивания отдельных частей. Это, однако, требует времени, и проблематично с точки зрения сцепления вместе каждой части постоянного магнита. Кроме того, если часть потеряна, постоянный магнит не может быть восстановлен (т.е., сформирован), что уменьшает количество изготовления.

Наполнение контейнера внутри, имеющего полость такого же размера и формы, как и паз ротора, заранее назначенным количеством смолы, и разламывание постоянного магнита в этом контейнере позволяет смоле эффективно проникать между частями постоянного магнита в то же время, когда постоянный магнит, например, разламывается.

Также, на этапе 2, постоянный магнит может быть разломан со скоростью разламывания 5 м/с или меньше.

Кроме того, на этапе 2, как описано выше, когда постоянный магнит, надлежит разломить на, по меньшей мере, четыре отдельных части и, по меньшей мере, три канавки формируют на постоянном магните, используют устройство разламывания, включающее множество заостренных элементов, которые входят в соответствующие канавки, и толкающие элементы, которые толкают заостренные элементы, отличные от заостренного элемента в центре, по направлению к конечным частям постоянного магнита, и постоянный магнит может быть разломан, пока толкающие элементы толкают соответствующие заостренные элементы, когда заостренные элементы вталкиваются в канавки во процессе разламывания.

Как может быть понято из объяснения выше, способ изготовления постоянного магнита в соответствии с изобретением чрезвычайно простой и недорогой способ, который позволяет произвести постоянный магнит с превосходными магнитными свойствами. Кроме того, двигатель IPM с превосходной выходной характеристикой может быть получен путем использования постоянного магнита изготовленного в соответствии с этим способом.

Краткое описание чертежей

Вышеупомянутые и дальнейшие цели, функции и преимущества изобретения будут очевидны из следующего описания вариантов осуществления со ссылкой на сопроводительные чертежи, в которых используются характерные номера, чтобы отобразить характерные элементы, и где:

rnrnrnrnrnrnrnrnrn

Фиг.1A и 1B - схемы, иллюстрирующие способ изготовления постоянного магнита в соответствии с настоящим изобретением, и Фиг.1A - схема, показывающая магнитные частицы, инжектируемые в фасонный штамп, и Фиг.1B - схема, показывающая продольную штамповку магнитным полем;

Фиг. с 2A-2D - схемы, которые следуют за Фиг.1A и 1B и иллюстрируют способ изготовления постоянного магнита в соответствии с настоящим изобретением, показывающие, в порядке от Фиг.2A до Фиг.2D, постоянный магнит, который был извлечен из фасонного штампа, разламываемый в устройстве разламывания;

Фиг.3 - вид, показывающий линию разлома в структуре постоянного магнита;

Фиг.4A и 4B - схемы, иллюстрирующие другой примерный вариант осуществления способа разламывания постоянного магнита, Фиг.4A - схема, показывающая постоянный магнит, размещенный внутри устройства разламывания, и

Фиг.4B - схема, показывающая постоянный магнит в разломанном состоянии;

Фиг.5 - схема, иллюстрирующая способ одновременного разламывания постоянного магнита и соединения отдельных частей;

Фиг.6 - схема, показывающая постоянный магнит, который был восстановлен, помещаемый в паз ротора;

Фиг. с 7A-7C - диаграммы, относящиеся к двигателю IPM, обеспеченному неразделенным постоянным магнитом (сравнительный пример 1), двигателю IPM, обеспеченному постоянным магнитом с машинной резкой (сравнительный пример 2), и двигателю IPM, обеспеченному постоянным магнитом, разломанным в соответствии со способом изготовления настоящего изобретения,

Фиг.7A - диаграмма, сравнивающая измеренные результаты, относящиеся к остаточной плотности магнитного потока каждого,

Фиг.7B - диаграмма, сравнивающая измеренные результаты, относящиеся к коэрцитивной силе каждого, и

Фиг.7C - диаграмма, сравнивающая измеренные результаты, относящиеся к вихревым потерям в сравнительном примере 2 и примерном варианте осуществления;

Фиг.8 - диаграмма, показывающая результаты испытаний, учитывая отношение между скоростью разлома и областью разлома межзеренной границы; и

Фиг.9 - вид линии разреза в структуре постоянного магнита в случае машинной резки в соответствии с известным уровнем техники.

Подробное описание вариантов осуществления

схема, показывающая магнитные частицы, инжектируемые в фасонный штампсхема, показывающая магнитные частицы, инжектируемые в фасонный штамп схема, показывающая продольную штамповку магнитным полемсхема, показывающая продольную штамповку магнитным полем

Примерные варианты осуществления настоящего изобретения будут описаны более подробно ниже со ссылкой на сопровождающие чертежи. Фиг.1A и 1B - схемы, иллюстрирующие способ изготовления постоянного магнита в соответствии с изобретением, Фиг.1A - схема, показывающая магнитные частицы, инжектируемые в фасонный штамп, и Фиг.1B - схема, показывающая продольную штамповку магнитным полем. Фиг. с 2A-2D - схемы, которые следуют за Фиг.1A и 1B и иллюстрируют способ изготовления постоянного магнита в соответствии с изобретением, показывающие, в порядке от Фиг.2A до Фиг.2D, постоянный магнит, который был извлечен из фасонного штампа, разламываемый в устройстве разламывания. Фиг.3 - вид, показывающий линию разлома в структуре постоянного магнита. Фиг.4A и 4B - схемы, иллюстрирующие другой примерный вариант осуществления способа разламывания постоянного магнита, Фиг.4A - схема, показывающая постоянный магнит, размещаемый внутри устройства разламывания, и Фиг.4B - схема, показывающая постоянный магнит в разломанном состоянии. Фиг.5 - схема, иллюстрирующая способ одновременного разламывания постоянного магнита и соединения отдельных частей, и Фиг.6 - схема, показывающая постоянный магнит, который был восстановлен, помещаемый в паз ротора.

схема, иллюстрирующая способ одновременного разламывания постоянного магнита и соединения отдельных частейсхема, иллюстрирующая способ одновременного разламывания постоянного магнита и соединения отдельных частей

Фиг.1A и 1B показывают фасонный штамп для изготовления постоянного магнита. Этот фасонный штамп, в основном, включает матрицу 50, которая имеет отверстия как сверху, так и снизу, верхний пуансон 20 и нижний пуансон 30, которые входят без зазора в матрицу 50 через верхнее и нижнее отверстия, соответственно, и двигаются вертикально внутри матрицы 50, и катушки 40, которые сформированы вокруг верхнего и нижнего пуансонов 20 и 30. В данном случае, фасонный штамп на чертежах - это фасонный штамп для продольной штамповки магнитным полем, в котором направление магнитного поля, генерируется катушками, параллельно направлению скольжения пуансонов. Альтернативно, однако, может быть использован фасонный штамп для поперечной штамповки магнитным полем, в котором катушки, формирующие N полюс и S полюс размещаются на внешней стороне штампа так, что магнитное поле генерируется ортогонально направлению толкания пуансонов пресса.

Полость С формируется между каждой конечной поверхностью верхнего и нижнего пуансонов. В частности, выступы для формирования канавок 31 для формирования назначенного числа канавок в назначенных местах на одной стороне поверхности постоянного магнита, который формируется путем штамповки магнитных частиц G, обеспечиваются на конечной поверхности нижнего пуансона 30. В данном случае, когда канавки формируются на обеих поверхностях постоянного магнита, может использоваться пуансон, в котором аналогичные выступы для формирования канавок, обеспечиваются в местах на конечной поверхности верхнего пуансона 20, которые соответствуют выступам 31 на конечной поверхности нижнего пуансона 30.

Как показано на Фиг.1A, магнитная сила G, необходимая для формирования одного постоянного магнита, вводится в полость C. Затем, как показано на Фиг.1B, продольная штамповка магнитным полем осуществляется путем движения верхнего пуансона 20 вниз, в то время как магнитное поле M генерируется в направлении, параллельном направлению штамповки (т.е., направлению Z на чертеже).

В данном случае, не смотря на то, что не показано на чертежах, другой способ штамповки, иной, чем описанный выше способ, является, например, многослойным способом штамповки. Этот способ использует фасонный штамп, в котором на обеих конечных поверхностях верхнего и нижнего пуансонов нет выступов для формирования канавок. Количество инжектированных магнитных частиц разделено, например, на три части, и штамповка осуществляется последовательно. С помощью этого способа, магнитные частицы, инжектированные в первой и третьей инжекции, из одного материала, в то время как магнитные частицы, инжектированные во второй инжекции, из другого материала. С каждой инжекцией, штамповка осуществляется так, что тела, отштампованные при малом давлении, формируются последовательно. Получившееся множество тел, отштампованных при малом давлении, сформированных посредством первой, второй и третьей инжекции магнитных частиц, формирует отдельный штампуемый постоянный магнит.

Когда постоянный магнит, изготовленный штамповкой, как описано выше, спекается в печи для спекания на следующем этапе, остаточное напряжение, вызванное разностью теплового расширения смежных тел, отштампованных при малом давлении, возникает на граничной поверхности между смежными телами, сформированными малым давлением. Кроме того, штампуемые поверхности, формируемые многослойной штамповкой являются этими граничными поверхностями, поэтому разделение происходит легко на этих граничных поверхностях.

постоянный магнит, извлеченный из фасонного штампа после продольной штамповки магнитным полемпостоянный магнит, извлеченный из фасонного штампа после продольной штамповки магнитным полем

В данном случае, между телами, формируемыми малым давлением, также может быть сформирован слой смолы, который имеет меньшую механическую прочность, чем тела, отштампованные при малом давлении, такой, как слой смолы из полиэтилена, полипропилена или полистирола или т.п.

Фиг.2A показывает постоянный магнит, извлеченный из фасонного штампа после продольной штамповки магнитным полем, показанного на Фиг.1. Постоянный магнит 1, показанный на Фиг.2A, имеет канавки 11, сформированные в трех местах. Постоянный магнит 1 затем разламывается в трех местах намеченных назначенными линиями разлома 12. В данном случае, как описано выше, похожие канавки могут быть также сформированы на верхней поверхности постоянного магнита 1 в местах, соответствующих канавкам 11 на нижней поверхности. Кроме того, четыре или более канавок могут также быть сформированы как назначенные.

Также, способ формирования канавок не ограничивается способом, в котором канавки формируются одновременно в постоянном магните, который был извлечен из фасонного штампа, обеспечением выступов для формирования канавок на внутренней поверхности полости фасонного штампа, как описано выше. Альтернативно, также может быть использован способ, в котором канавки формируются в этих назначенных местах путем последующей обработки, после того как постоянный магнит был сформирован.

Здесь, канавки 11 протравливают, используя соляную кислоту или серную кислоту или т.п. перед разламыванием постоянного магнита 1. Окисление поверхности канавки травлением открывает межзеренную границу, которая формирует основные фазы, расположенные на поверхности, что способствует разделению вдоль поверхности межзеренной границы между основными фазами.

Травление в этом случае называется окислением, по меньшей мере, поверхности канавок, используя соляную кислоту или серную кислоту или т.п. для открытия межзеренной границы, которая формирует основные фазы, размещаемые на поверхности, что способствует разламыванию вдоль фазы межзеренной границы между основными фазами. Альтернативно, травление превращает границу частицы поверхности в высокопрочный магнитный слой, так что сила фазы между межзеренными границами сравнительно небольшая, что способствует разламыванию вдоль фазы межзеренной границы.

способ изготовления постоянного магнита в соответствии с настоящим изобретениемспособ изготовления постоянного магнита в соответствии с настоящим изобретением

Далее, постоянный магнит 1 располагается между нижним пуансоном 70 и верхним пуансоном 60, которые формируют устройство 100 разламывания, как показано на Фиг.2B. Здесь, выпуклая многоугольная поверхность, в которой линии 61, 62, и 63 разлома формируются в местах, соответствующих соответствующим линиям разлома, формируется на конечной поверхности верхнего пуансона 60. Аналогичным образом, вогнутая многоугольная поверхность, в которой линии 71, 72, и 73 разлома формируются в местах, соответствующих соответствующим линиям разлома и которые устанавливаются вместе с выпуклой многоугольной поверхностью верхнего пуансона 60, формируется на конечной поверхности нижнего пуансона 70.

центр постоянного магнита разламывается первымцентр постоянного магнита разламывается первым

Как показано на Фиг.2C, когда верхний пуансон 60 двигается вниз, центр постоянного магнита разламывается первым, как показано на схеме. Затем, когда верхний пуансон 60 двигается далее вниз, боковые части также разламывают, как показано на Фиг.2D, так, что получаются четыре отдельные части 13.

получаются четыре отдельные части 13.получаются четыре отдельные части 13.

Когда постоянный магнит разламывается таким образом, граница разлома L2 создается, как показано на Фиг.3, которая является увеличенным видом внутренней структуры постоянного магнита.

вид, показывающий линию разлома в структуре постоянного магнитавид, показывающий линию разлома в структуре постоянного магнита

Здесь, металлическая структура постоянного магнита сформирована фазой R межзеренной границы, которая делает вклад в коэрцитивную силу, вмешивающуюся между основными фазами S, которые делают вклад в магнетизм. Когда эта структура механически отрезается, как это происходит в известном уровне техники, линия отреза L1 разделяет основные фазы S, как показано на Фиг.9. Напротив, в соответствии с примерным вариантом осуществления, линия разлома L2 создается вдоль фазы R межзеренной границы, которая не такая прочная, как основные фазы S. Как результат, отдельные части могут быть получены, в то время как исходные размеры основных фаз S поддерживаются и внешние периферии основных фаз S защищаются фазой R межзеренной границы.

схема, показывающая постоянный магнит, размещенный внутри устройства разламываниясхема, показывающая постоянный магнит, размещенный внутри устройства разламывания схема, показывающая постоянный магнит в разломанном состояниисхема, показывающая постоянный магнит в разломанном состоянии

Фиг.4A и 4B - это схемы, иллюстрирующие другой способ разламывания постоянного магнита, используя устройство разламывания в соответствии с другим примерным вариантом осуществления. В данном случае, на чертежах, множество канавок 11 формируется в соответствующих позициях на обеих сторонах постоянного магнита. Устройство разламывания 100A обеспечено толкающими поверхностями 101 и 111 крайних с внешней стороны в вертикальном направлении. Разламываемые части 120 и 130 устанавливаются вертикально к внутренней стороне этих толкающих поверхностей 101 и 111. Разламываемые части 120 и 130 включают множество заостренных элементов 105, 106, 107, 115, и 117, предусмотренных на поверхности, на противоположной стороне от толкающих поверхностей 101 и 111 в местах, соответствующих канавкам 11 в постоянном магните. Кроме того, в разламываемых частях 120 и 130, пружины 104 и 114, а также двигающиеся элементы 103 и 113, которые соединяются с этими пружинами 104 и 114, крепятся к заостренным элементам 106, 107, 116, и 117, отличным от заостренных элементов 105 и 115, которые соответствуют канавкам в центре, среди множества канавок. Эти двигающиеся элементы 103 и 113 имеют треугольные поперечные сечения, если смотреть со стороны, и заостренные элементы 106, 116, 107, 117 каждый крепится к конечной поверхности на стороне, обращенной к постоянному магниту среди трех сторон треугольных скользящих элементов 103 и 113. Также, конечная поверхность на толкающей стороне среди трех сторон треугольных скользящих элементов 103 и 113 является наклонной по отношению к толкающей поверхности. Выступы 102 и 112, которые выступают из толкающих поверхностей 101 и 111 упираются в наклонные поверхности двигающихся элементов 103 и 113. Когда толкающие поверхности 101 и 111 толкаются, т.е. двигаются вниз, выступы 102 и 112 двигают двигающиеся элементы 103 и 113 по направлению к конечным частям постоянного магнита против побуждающей силы пружины 104 и 114. В результате, острые выступающие элементы 106 и 116 и подобные, которые соединяются с двигающимися элементами 103 и 113, соответственно, перемещаются вбок с двигающимися элементами 103 и 113, вместе с тем также перемещаются вертикально (в направлении разламывания).

Когда обе толкающих поверхности 101 и 111 толкаются в противоположные стороны (в направлении X на Фиг.4B), как показано на Фиг.4B, от позиции, показанной на Фиг.4A, двигающиеся элементы 103 и 113 толкаются в направлении наружу в направлении Y1 посредством выступов 102 и 112, толкающих двигающиеся элементы в направлении X1. Соответствующие верхний и нижний заостренные элементы 106 и 116 и подобные разламывают постоянный магнит 1A, в то время как разделенные фрагменты на конечных частях толкаются в направлении наружу по направлению к стороне конечной части постоянного магнита, как двигаются соответствующие заостренные элементы. Как результат, постоянный магнит 1A может быть эффективно разломан также в центральной части.

FIG.5 - это схема, показывающая устройство разламывания 100В, которое включает контейнер 80 с отверстием, и крышку 90, которая устанавливается в отверстие.

Контейнер 80 включает в себя выступы 81, 82, и 83 на нижней поверхности, в позициях соответствующих канавкам 11, сформированным в постоянном магните 1. Внутренняя форма и внутренние размеры контейнера 80 с крышкой 90 назначены, как правило, такими же, как внутренняя форма и внутренние размеры паза ротора, в которой постоянный магнит должен быть помещен.

Смола P для сцепления заранее назначенного количества отдельных частей вместе впрыскивается в контейнер 80 перед тем, как постоянный магнит 1 помещается в контейнер 80.

Постоянный магнит 1 затем помещается в контейнер 80 и крышка 90 приспосабливается на контейнер 80 и толкается вниз. Как результат, в устройстве разламывания 100B постоянный магнит 1 разламывается на четыре отдельных части, в то же время, смола Р проникает между отдельными частями. Затем получается восстановленный постоянный магнит, как только смола между фрагментами затвердевает.

rnrnrnrnrnrnrnrnrn

Использование этого устройства разламывания 100В позволяет не только разламывать постоянный магнит и сцеплять получившиеся части вместе практически одновременно, но также предотвращает потерю отдельных частей и облегчает работу по сцеплению отдельных частей вместе позже.

В данном случае, в целях содействия проникновению смолы, устройство разламывания может также снабжаться засасывающим устройством для создания пониженного атмосферного давления в иллюстрируемом разламывающем устройстве.

В данном случае, смола может также впрыскиваться в контейнер одновременно с разламыванием. Также, создание пониженного атмосферного давления внутри контейнера в дальнейшем увеличивает проникающий эффект смолы.

Смола, описанная выше, может быть эпоксидной смолой или ВМС (компаунд для объемного формирования) смолой или подобной. Предпочтительно, чтобы смола была жароустойчивой, например, примерно до 200°C. В данном случае, ВСМ смола является формовочной смолой, в которой полосы стекловолокна как усиливающие элементы смешиваются с ненасыщенной полиэфирной смолой, которая является основной компонентой.

схема, показывающая постоянный магнит, который был восстановлен, помещаемый в паз роторасхема, показывающая постоянный магнит, который был восстановлен, помещаемый в паз ротора

Как показано на Фиг.6, постоянный магнит 1, который был разломан (линии разлома указаны буквой К) устройством разламывания 100 или 100В и восстановлен сцеплением частей снова вместе, помещается в паз 1100 ротора 1000, формируемого например, из слоистых магнитных стальных листов, двигателя IPM, и фиксируется в своем положении.

[Сравнительные испытания и результаты испытаний, относящиеся к остаточной плотности магнитного потока, коэрцитивной силе и вихревым потерям]

Изобретатели приготовили части для испытания постоянного магнита, двигатель IPM, в котором постоянный магнит состоит одной части (т.е., не разломанный) в роторе (сравнительный пример 1), и двигатель IPM, в котором постоянный магнит был машинно разрезан режущим инструментом и затем восстановлен и зафиксирован в роторе (сравнительный пример 2), и двигатель IPM, в котором постоянный магнит был разломан и затем восстановлен в соответствии со способом разлома примерного варианта осуществления и зафиксирован в роторе (примерный вариант осуществления), и провели испытания каждого. Каждая часть для испытания имеет поперечное сечение 6,5 мм × 9,9 мм и длину 57 мм. Также, постоянный магнит, который был разрезан в 14 местах так, что было получено 15 отдельных частей, и затем восстановлен. Подобным образом, постоянный магнит, который был разломан, был разломан в 14 местах так, что было получено 15 отдельных частей, и затем восстановлен.

При использовании частей для испытания, описанных выше, были измерены коэрцитивная сила (Hcj) и остаточная плотность магнитного потока (Br), которые являются магнитными свойствами сравнительных примеров 1 и 2 и примерного варианта осуществления, результаты испытаний сравнены. Кроме того, чтобы доказать, что постоянный магнит, который был разломан, эквивалентен с точки зрения вихревых потерь постоянному магниту, который был машинно разрезан в соответствии с известным уровнем техники, вихревые потери сравнительного примера 2 и примерного варианта осуществления были измерены и результаты испытаний сравнены.

Результаты сравнения показаны на Фиг. с 7A по 7C. В данном случае, на Фиг.7A и 7B, измеренное значение сравнительного примера 1 равно 100, а измеренное значение других частей для испытания указываются в процентах по отношению к этому значению. Также, на Фиг.7C, измеренное значение примерного варианта осуществления также равно 100.

диаграмма, сравнивающая измеренные результаты, относящиеся к остаточной плотности магнитного потока каждогодиаграмма, сравнивающая измеренные результаты, относящиеся к остаточной плотности магнитного потока каждого диаграмма, сравнивающая измеренные результаты, относящиеся к коэрцитивной силе каждогодиаграмма, сравнивающая измеренные результаты, относящиеся к коэрцитивной силе каждого диаграмма, сравнивающая измеренные результаты, относящиеся к вихревым потерям в сравнительном примере 2 и примерном варианте осуществлениядиаграмма, сравнивающая измеренные результаты, относящиеся к вихревым потерям в сравнительном примере 2 и примерном варианте осуществления

В соответствии с Фиг.7A, очевидно, что значение сравнительного примера 2, в котором постоянный магнит был разрезан, равно 97,6 и значение примерного варианта осуществления, в котором магнит был разломан, равно 99,3, что на 1,7 выше значения сравнительного примера 2. Увеличенное значение остаточной плотности магнитного потока чрезвычайно велико с точки зрения магнитных свойств двигателя, из-за того, что основные фазы, которые формируют постоянный магнит, не были разделены и уменьшены в размере, как описано выше.

Также, в соответствии с Фиг.7B, очевидно, что значение сравнительного примера 2 равно 97,0 и значение примерного варианта осуществления равно 99,5, что на 2,5 больше значения сравнительного примера 2. Подобно остаточной плотности магнитного потока, это возросшее значение для коэрцитивной силы также чрезвычайно велико в показателях магнитных свойств двигателя и также по причине того факта, что перемагничивание не происходит, потому что покрытие фазы межзеренной границы, которая окружает основные фазы, не нарушается в результате разламывания, как описано выше.

Далее, в соответствии с Фиг.1C, очевидно, что вихревые потери примерного варианта осуществления приблизительно такие же, как и для сравнительного примера 2. Поэтому очевидно, что даже если постоянный магнит разломан, то можно ожидать вихревые потери, эквивалентные тем, когда постоянный магнит машинно разрезан.

[Испытания и результаты испытаний, относящиеся к скорости разламывания и площади разламывания межзеренной границы]

В дополнение, изобретатели также приготовили части для испытаний, в которых единственная канавка сформирована в центре постоянного магнита. Этот постоянный магнит затем поддерживался в двух точках на левой и правой конечных частях, так, чтобы охватить с двух сторон канавку, и приблизительно та же нагрузка прикладывалась с постоянной скоростью давления (скоростью разламывания) слева и справа от канавки, после чего было измерено процентное содержание площади сечения поверхности разламывания межзеренной границы. Это испытание было проведено с различными скоростями разламывания. Результаты измерений площади сечения межзеренной границы при каждой скорости разламывания показаны на Фиг.8.

диаграмма, показывающая результаты испытаний, учитывая отношение между скоростью разлома и областью разлома межзеренной границыдиаграмма, показывающая результаты испытаний, учитывая отношение между скоростью разлома и областью разлома межзеренной границы

В соответствии с Фиг.8, очевидно, что скорость разлома приблизительно 5 м/с является точкой перегиба, при этом площадь разламывания межзеренной границы в это время составляет приблизительно 30% от всей области разламывания. Меньшая скорость разламывания приводит к внезапному возрастанию площади разламывания межзеренной границы, при скорости разламывания приблизительно 1 м/с площадь разламывания межзеренной границы составляет приблизительно 70% от всей площади разламывания, и при скорости разламывания приблизительно 0,1 м/с область разламывания межзеренной границы составляет приблизительно 80% от всей площади разламывания. В соответствии с этими результатами испытаний, предпочтительнее, чтобы разламывание осуществлялось со скоростью разламывания 5 м/с или менее, и более предпочтительно, 1 м/с или менее.

Хотя примерные варианты осуществления изобретения были описаны подробно со ссылкой на чертежи, конкретная структура не ограничивается этими примерными вариантами осуществления. То есть, множество модификаций и изменений, таких, как изменения в дизайне, также включаются в предназначенные рамки изобретения.

Например, постоянный магнит, который получается способом изготовления в соответствии с примерным вариантом осуществления изобретения, в частности не ограничивается пока он включает редкоземельный магнит, ферритовый магнит, или алнико магнит и т.п., и имеет металлическую структуру, выполненную из основных фаз, которые осуществляют вклад в магнетизм, и фазы межзеренной границы, которая осуществляет вклад в коэрцитивную силу. Также, термин «постоянный магнит» в этом изобретении может также относиться к спеченному телу или просто компактному телу, которое еще не было намагничено, а также к редкоземельному магниту или т.п., что было намагничено. Примеры редкоземельных магнитов включают магнит из неодима с системой из трех компонентов, в которой железо и бор добавлены к неодиму, магнит из самария и кобальта, изготовленный из двухкомпонентной системы сплава из самария и кобальта, магнит из самария, железа и азота, магнит из празеодимия и т.п. Среди указанного, редкоземельный магнит имеет продукт с более высокой максимальной энергией (BH) max, чем ферритовый магнит или алнико магнит, поэтому редкоземельный магнит более подходит для применения в двигателях гибридных транспортных средств и т.п., где требуется высокая выходная производительность.

Далее, в способе изготовления в соответствии с примерным вариантом осуществления изобретения, может быть приготовлен фасонный штамп, который включает пуансон и матрицу и т.п., имеющий назначенную полость, магнитные частицы для постоянного магнита инжектируются в этот фасонный штамп, и штамповка осуществляется при нормальной атмосферной температуре (этап 1). В данном случае, эта штамповка может быть, например, продольной штамповкой магнитным полем или поперечным магнитным полем. Эта штамповка формирует постоянный магнит, имеющий такую же или подобную форму и размер, как, например, внутри паза ротора. То есть, в общем, одинаковые форма и размер в этом примерном варианте осуществления включают не только такую же форму и размер, но также и подобные форму и размер. Однако, в этом примерном варианте осуществления изобретения, постоянный магнит, который был разломан на отдельные части, и эти отдельные части затем формируются вместе (т.е., интегрируются) с формовочной смолой или т.п., помещается и фиксируется в пазу ротора так, что размеры постоянного магнита немного меньше размеров паза ротора.

В способе разламывания и последующего восстановления постоянного магнита, предпочтительно при условии эффективности изготовления осуществлять все требуемое число разломов одновременно. Например, когда три или более канавок сформированы на одном постоянном магните так, что четыре или более отдельные части формируются, изобретатели определили, что постоянный магнит разламывается легко в конечных частях, но нелегко - вблизи от центра. Поэтому, когда пытаются сформировать все отдельные части сразу, все отдельные части теоретически могут быть получены, например, вставкой заостренных элементов в канавки и проталкивания их вниз одновременно. В действительности, однако, вставка заостренных элементов в канавки в конечных частях создает силу сжатия с двух концов постоянного магнита по направлению к центру. В результате, сопротивление элементов постоянного магнита силам сжатия слева и справа больше, чем сила вставки заостренного элемента в центральной позиции, что делает более сложным разламывание постоянного магнита в центральной позиции.

Поэтому, в этом примерном варианте осуществления, используется устройство разламывания, которое имеет множество заостренных элементов, соответствующих множеству канавок, предусмотренных на части толкающей поверхности, и толкающие элементы, такие, как пружины, предусмотренные на заостренных элементах, отличных от заостренного элемента, который соответствует канавке в центре. Толкание толкающей поверхности вниз вталкивает заостренные элементы в соответствующие канавки, разламывая постоянный магнит. В то же время, толкающие элементы выталкивают полученные отдельные части по направлению к конечным частям постоянного магнита, что подавляет силу сжатия возникающую по направлению к центру постоянного магнита, таким образом осуществляя разламывание части около центра. В данном случае, заостренные элементы на конечных частях постоянного магнита могут быть сделаны длиннее (т.е., выше), чем элементы в центре, так что когда толкающая поверхность толкается вниз одним нажимом, сначала разламывают конечные части и полученные отдельные части выталкиваются наружу, после чего разламывают центральную часть.

В данном случае, постоянный магнит, изготавливаемый в соответствии со способом изготовления примерного варианта осуществления изобретения, описанного выше, ротор, обеспеченный этим постоянным магнитом, и двигатель IPM, обеспеченный этим ротором, особенно хорошо подходят для двигателя гибридного транспортного средства или электрического транспортного средства, в котором требуется высокий выходной коэффициент полезного действия.

Хотя было рассмотрено настоящее изобретение со ссылкой на его примерные варианты осуществления, следует понимать, что изобретение не ограничивается примерными вариантами осуществления или конструкциями. Напротив, изобретение предназначено для охвата различных модификаций и эквивалентных устройств. Кроме того, пока различные элементы примерных вариантов осуществления показаны в различных сочетаниях и конфигурациях, которые являются примерными, другие сочетания и конфигурации, включающие больше, меньше или только один элемент, также относятся к сущности и области действия настоящего изобретения.

Формула изобретения

1. Способ изготовления постоянного магнита (1), вставленного в паз ротора для двигателя с внутренним постоянным магнитом, характеризующийся тем, что:

  • изготавливают один постоянный магнит в целом такой же формы и размера, как форма и размер внутреннего объема паза, путем штамповки магнитных частиц для этого постоянного магнита в фасонном штампе (50);
  • задают по крайней мере одну линию разлома для разделения этого одного постоянного магнита на заданное количество отдельных частей;
  • разламывают указанный один постоянный магнит вдоль по крайней мере одной заданной линии разлома, получая заданное количество, по крайней мере две, отдельных частей этого одного постоянного магнита; и
  • восстанавливают этот один постоянный магнит, соединяя между собой указанные отдельные части по линиям разлома.

2. Способ изготовления по п.1, в котором получение заданного числа отдельных частей включает нажим на заданный участок поверхности этого одного отштампованного постоянного магнита.

3. Способ изготовления по п.2, в котором на указанном одном постоянном магните формируют по крайней мере одну канавку (11) вдоль заданной(ых) линии(й) разлома, при этом указанная(ые) канавка(и) является(ются) заданным(и) участком(ами) для нажима.

4. Способ изготовления по п.3, в котором на указанном одном постоянном магните формируют по крайней мере одну канавку (11) вдоль заданной(ых) линии(й) разлома, когда штампуют этот один постоянный магнит.

5. Способ изготовления по п.3, в котором на указанном одном постоянном магните формируют по крайней мере одну канавку (11) вдоль заданной(ых) линии(й) разлома перед разламыванием этого одного постоянного магнита.

6. Способ изготовления по любому из пп.3-5, в котором этот один постоянный магнит разламывают после протравливания канавки.

7. Способ изготовления по п.1, в котором этот один постоянный магнит формируют с заданным числом отштампованных при малом давлении и последовательно уложенных тел путем осуществления штамповки последовательно в несколько этапов; и по меньшей мере тела, отштампованные при малом давлении, которые являются смежными друг другу, формируют из магнитных частиц разного материала.

8. Способ изготовления по п.7, в котором имеет место остаточное напряжение между заданным числом тел, отштампованных при малом давлении.

9. Способ изготовления по п.7, в котором этот один отштампованный постоянный магнит разламывают на заданное число тел, отштампованных при малом давлении.

10. Способ изготовления по любому из пп.1-5, в котором разламывание этого одного постоянного магнита осуществляют в контейнере (80), заполненном смолой; а восстановление этого одного постоянного магнита включает сцепление заданного числа отдельных частей вместе с помощью смолы.

11. Способ изготовления по любому из пп.1-5, в котором разламывание этого одного постоянного магнита осуществляют в контейнере (80), заполненном смолой; а восстановление этого одного постоянного магнита включает формование заданного числа отдельных частей вместе с помощью смолы.

12. Способ изготовления по любому из пп.1-5, в котором разламывание этого одного постоянного магнита осуществляется в контейнере (80); смолу впрыскивают в контейнер в то же время, когда разламывают этот один постоянный магнит; а восстановление этого одного постоянного магнита включает сцепление заданного числа отдельных частей вместе со смолой.

13. Способ изготовления по любому из пп.1-5, в котором разламывание постоянного магнита осуществляют в контейнере (80); смолу впрыскивают в контейнер в то же время, когда разламывают постоянный магнит; а восстановление постоянного магнита включает формование небольшого числа отдельных частей вместе с помощью смолы.

14. Способ изготовления по любому из пп.1-5, в котором разламывание этого одного постоянного магнита осуществляют со скоростью разламывания 5 метров в секунду или менее.

15. Способ изготовления по любому из пп.1-5, в котором, когда этот один отштампованный постоянный магнит надлежит разломить по меньшей мере на четыре отдельных части и, по меньшей мере, три канавки (11) формируют на этом одном постоянном магните, используют устройство разламывания, включающее множество заостренных элементов, которые входят в соответствующие канавки, и толкающие элементы, которые толкают заостренные элементы, отличные от заостренного элемента в центре, по направлению к конечным частям этого одного постоянного магнита, и этот один постоянный магнит разламывают, когда толкающие элементы выталкивают соответствующие заостренные элементы, а заостренные элементы вталкиваются в канавки во время разламывания.

16. Способ изготовления по любому из пп.1-5, в котором этот один постоянный магнит формируют из нескольких основных фаз и фазы межзеренной границы, расположенной между основными фазами; а разламывание этого одного постоянного магнита осуществляют вдоль фазы межзеренной границы.

17. Способ изготовления по любому из пп.1-5, в котором этот один постоянный магнит является редкоземельным магнитом.

18. Способ изготовления по любому из пп.1-5, в котором заданное число отдельных частей равно четырем.

19. Постоянный магнит, изготовленный способом изготовления по п.1.

20. Ротор для двигателя с внутренним постоянным магнитом, в котором постоянный магнит по п.19 установлен в пазу.

21. Двигатель с внутренним постоянным магнитом, снабженный, по меньшей мере, ротором по п.20.

Имя изобретателя: НАКАМУРА Кенжи (JP), ТАКЕУЧИ Шигэто (JP), КАНАДА Кэйу (JP), СУЗУКИ Масафуми (JP), Когурэ Томонари (JP)
Имя патентообладателя: ТОЙОТА ДЗИДОСЯ КАБУСИКИ КАЙСЯ (JP)
Почтовый адрес для переписки: 125009, Москва, а/я 332, ЗАО "Инэврика"
Дата начала отсчета действия патента: 02.12.2008

Разместил статью: admin
Дата публикации:  28-05-2014, 23:55

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Взрывомагнитный генератор сильных магнитных полей и токов
Взрывомагнитный генератор содержит деформируемую спираль, состоящую из двух соосных, расположенных друг над другом и индуктивно связанных частей. Нижняя спираль является полностью деформируемой и образует рабочую полость генератора, а верхняя спираль образует частично деформируемую зону трансформации магнитного потока из рабочей полости генератора в индуктивную нагрузку. Все заходы нижней спирали включены согласно относительно друг друга. Заходы с четными и нечетными номерами верхней спирали...

Магнитная передача для редукторов или мультипликаторов
Изобретение относится к машиностроению и может быть использовано преимущественно для редукторов или мультипликаторов. Магнитная передача содержит ведомый и ведущий валы, на которых установлены, соответственно ведомый и ведущий диски из магнитопроницаемого материала с постоянными магнитами, установленными с одинаковым шагом по периферии. Постоянные магниты по меньшей мере одного цилиндра выполнены трапециевидной формы и установлены в трапециевидных полостях, выполненных в диске с зазором....








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: (3+3)/2=?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Бесконтактный электростатический магнитный подшипник

Бесконтактный электростатический магнитный подшипник Изобретение относится к области машиностроения и может быть использовано в подшипниковых узлах. Изобретение позволяет создать подшипник, имеющий…
читать статью
Магниты и электромагниты
Многополюсная магнитная система

Многополюсная магнитная система Изобретение относится к электротехнике, к конструктивному выполнения магнитных систем на постоянных магнитах. Многополюсная магнитная система в виде…
читать статью
Магниты и электромагниты
Способ изготовления термостабильных редкоземельных магнитов

Способ изготовления термостабильных редкоземельных магнитов Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в…
читать статью
Магниты и электромагниты
Магнитный редуктор

Магнитный редуктор Изобретение относится к области электротехники и электромагнитных механизмов, а именно к бесконтактным магнитным редукторам, и может быть…
читать статью
Магниты и электромагниты
Способ и устройство для создания тороидального магнитного поля

Способ и устройство для создания тороидального магнитного поля Изобретение относится к электротехнике и может быть использовано для научных исследований, в частности по взаимодействию тороидального магнитного…
читать статью
Магниты и электромагниты
Магнитный сплав содержащий гафний

Магнитный сплав содержащий гафний Ноу-хау разработки, а именно данное изобретение автора относится к области металлургии, в частности, к магнитным сплавам с направленной структурой,…
читать статью
Технологии плавки и сплавы, Магниты и электромагниты
Нанокомпозитный дисперсный магнитный материал

Нанокомпозитный дисперсный магнитный материал Изобретение относится к области создания новых структурированных нанокомпозитных материалов и может быть использовано, в частности, для получения…
читать статью
Магниты и электромагниты
Способ получения аморфных магнитных пленок Co-P

Способ получения аморфных магнитных пленок Co-P Изобретение относится к области химического осаждения аморфных магнитных пленок Co-P, например, на полированное стекло и может быть использовано в…
читать статью
Магниты и электромагниты
Электромагнит постоянного тока

Электромагнит постоянного тока Ноу-хау разработки, а именно данное изобретение автора относится к приводным прямоходовым цилиндрическим электромагнитам, может быть использовано для…
читать статью
Магниты и электромагниты
Способ получения статического сверхсильного магнитного поля А.Б. Бережного-Б.Н. Игнатова

Способ получения статического сверхсильного магнитного поля А.Б. Бережного-Б.Н. Игнатова Способ получения статического сверхсильного магнитного поля А.Б. Бережного - Б.Н. Игнатова, заключающийся в последовательном выполнении операций:…
читать статью
Магниты и электромагниты
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
pi31453_53
Публикаций: 9
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
Patriotjpa
Публикаций: 0
Комментариев: 0
kapriolree
Публикаций: 0
Комментариев: 0
gustavoytd
Публикаций: 0
Комментариев: 0
Mihaelsjp
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru