Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Электромагнитный генератор механической энергии
Изобретения » Новые типы движителей » Нетрадиционные типы двигателей и движителей
Электромагнитный генератор механической энергии Электромагнитный генератор механической энергииОписана конструкция, логическое обоснование и  основы принципа действия "Электромагнитного генератора механической энергии” (ЭМГМЭ). Устройство представляет собой электрическую машину инновационной конструкции, предназначенную для генерирования механической мощности, на основе взаимодействия магнитных полей различной конфигурации. Реализация устройства позволит создать полностью автономные источники энергии и автономные движители....
читать полностью


» Изобретения Российской Федерации » Электроника и электротехника » Магниты и электромагниты
Добавить в избранное
Мне нравится 0


Сегодня читали статью (2)
Пользователи :(0)
Пусто

Гости :(2)
0
Добавить эту страницу в свои закладки на сайте »

Способ и устройство для создания тороидального магнитного поля


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2509385

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к технической физике и может быть использовано для научных исследований, в частности по взаимодействию тороидального магнитного поля с однополярными магнитными жидкостями.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Широко известно создание тороидальных магнитных полей в ускорителях заряженных частиц циклотронного типа, например в адронном коллайдере. Простейший способ создания тороидального магнитного поля основан на пропускании постоянного электрического тока в обмотке, выполненной на тороиде. Внутри такого тороида, представляющего собой кольцевую трубку, например стеклянную, образуется однородное по криволинейной координате (соосной окружностям в полости тороида) магнитное поле, которое имеет максимум напряженности на окружности, проходящей через центр сечения трубки тороида, что обусловлено механизмом давления друг на друга однонаправленных магнитных силовых линий - к центру сечения тороида это давление повышается и поверхностная плотность магнитных силовых линий увеличивается. К преимуществу такого (активного) способа создания тороидального магнитного поля относится возможность создания сильного магнитного поля путем повышения тока до предельных величин, ограниченных электропрочностью проводника указанной обмотки. В импульсных тороидальных магнитных полях плотность тока в обмотке может быть многократно увеличена, что позволяет получать сверхсильные тороидальные магнитные поля [1-2]. Тороидальные магнитные поля используют в магнитных ловушках и стеллараторах для удержания плазмы при решении задач создания управляемой термоядерной реакции [3-4], однако такие тороидальные поля имеют форму спиралей вокруг некоторой тороидальной полости, внутри которой находится удерживаемая плазма.

К недостатку известного способа следует отнести необходимость затраты электрической энергии для создания тороидальных магнитных полей. В тех случаях, когда не ставится задача создания сверхсильных магнитных полей, было бы целесообразно ограничиться использованием комбинации постоянных магнитов, не требующих затраты электрической энергии.

Целью изобретения является создание тороидального магнитного поля в свободном пространстве без использования электрической энергии.

Указанная цель достигается способом создания тороидального магнитного поля, заключающимся в том, что склеивают между собой две пары соосно установленных магнитотвердых ферромагнитных тороидов с прямоугольной формой сечения так, что в первой паре тороиды одинаковой толщины вставляют друг в друга с зазором между внешним диаметром первого тороида и внутренним диаметром второго тороида первой пары, а одинаковыми по габаритам тороидами второй пары перекрывают их плоскими гранями указанный зазор первой пары тороидов с обеих сторон этого зазора, образуя тороидальную полость между четверкой тороидов, причем на всех четырех тороидах предварительно наматывают катушки их намагничивания по правому или левому кругам в зависимости от направления тока намагничивания в них, катушку первого тороида первой пары тороидов соединяют с катушкой первого электромагнита, образующего радиально-кольцевое магнитное поле, в которое помещают первый тороид первой пары тороидов и производят его намагничивание постоянным током, насыщающим ферромагнетик первого тороида, аналогичные операции осуществляют со вторым тороидом первой пары тороидов, используя при этом второй электромагнит с другими габаритами кольцевого зазора, соответствующими габаритам второго тороида первой пары тороидов, а затем катушки намагничивания по правому или левому кругам первого и второго тороидов второй пары соединяют последовательно между собой и с катушкой третьего электромагнита, образующего однородное соленоидальное магнитное поле, ортогональное плоским граням первого и второго тороидов второй пары тороидов, помещенных в указанное магнитное поле третьего электромагнита, и производят намагничивание второй пары тороидов постоянным током, насыщающим ферромагнетик тороидов второй пары, а после указанного намагничивания со всех четырех тороидов снимают катушки намагничивания по правому или левому кругам, а склеивание тороидов между собой производят так, что все одноименные магнитные полюсы обращают в образующуюся тороидальную полость с одинаковыми направлениями тангенциальных составляющих векторов намагниченности всех четырех тороидов по правому или левому кругам.

Достижение поставленной цели объясняется действием только постоянных магнитов, не требующих для своего функционирования электрического тока. Векторы магнитной индукции используемых ферромагнитных тороидов со специфической, так называемой косокруговой намагниченностью, образуют в свободном тороидальном пространстве - полом тороиде с прямоугольным (в частности, с квадратным) сечением - магнитные силовые линии с одинаковой направленностью, исходящие из магнитных полюсов ферромагнитных тороидов в направлении по правому или левому кругам и являющиеся взаимно не пересекаемыми из-за того, что все магнитные полюсы, обращенные к тороидальной полости, являются одноименными, например, только северными (N) или только южными (S). При этом в тороидальной полости образуется однородное по криволинейной координате магнитное поле, напряженность которого возрастает от краев тороидальной полости к ее центру в сечении, нормальном к криволинейной координате - направлению распространения силового магнитного поля (по правому или левому кругам).

rnrnrnrnrnrnrnrnrn

Термин косокруговое магнитное поле введен автором и известен в опубликованных его работах [5-7].

устройство для создания тороидального магнитного поляустройство для создания тороидального магнитного поля

Способ реализуется представленным на рис.1 устройством, показанным в центральном сечении. Это устройство включает:

1 - первый ферромагнитный тороид с косокруговым намагничиванием его БОКОВЫХ граней,

2 - второй ферромагнитный тороид с косокруговым намагничиванием его БОКОВЫХ граней,

3 - третий ферромагнитный тороид с косокруговым намагничиванием его ПЛОСКИХ граней,

4 - четвертый ферромагнитный тороид с косокруговым намагничиванием его ПЛОСКИХ граней.

сравнительные габариты используемых соосно установленных ферромагнитных тороидов (вид сверху) первой пары тороидов.сравнительные габариты используемых соосно установленных ферромагнитных тороидов (вид сверху) первой пары тороидов.

На рис.2 указаны сравнительные габариты используемых соосно установленных ферромагнитных тороидов (вид сверху) первой пары тороидов.

На рис.3 указаны сравнительные с тороидами первой пары (рис.2) габариты первого и второго тороидов второй пары тороидов.

rnrnrnrnrnrnrnrnrn

третий ферромагнитный тороид с косокруговым намагничиванием его ПЛОСКИХ гранейтретий ферромагнитный тороид с косокруговым намагничиванием его ПЛОСКИХ граней

На рис.4 представлена конструкция первого и второго электромагнитов с разными габаритами кольцевого магнитного зазора, в который помещаются первый и второй ферромагнитные тороиды первой пары тороидов с намотанными на них катушками намагничивания по правому или левому кругам, что определяется выбранным направлением тока намагничивания в них. Этот электромагнит образует в своем магнитном зазоре радиально-кольцевое магнитное поле.

На рис.5 представлена конструкция третьего электромагнита, в магнитный зазор которого вставляются первый и второй ферромагнитные тороиды второй пары тороидов с намотанными на них катушками намагничивания по правому или левому кругам, что также определяется выбранным направлением тока намагничивания в них. Такой электромагнит образует однородное соленоидальное магнитное поле.

При этом первый 1 и второй 2 ферромагнитные тороиды вставлены соосно один в другой с зазором, образующим ширину тороидальной полости, а третий 3 и четвертый 4, расположенные соосно соответственно снизу и сверху образовавшегося тороидального зазора, перекрывают последний, и при этом одинаковая толщина первого и второго ферромагнитных тороидов образует высоту тороидального пространства. Указанные ширина и высота сечения тороидального пространства могут быть выбраны одинаковыми, и тогда тороидальное пространство между скрепленными между собой четырьмя ферромагнитными тороидами представляется кольцом с квадратным сечением. Внутри этого кольца действует однонаправленное и однородное по окружностям, соосным данному кольцу, магнитное поле, напряженность которого по сечению кольца растет от краев сечения к его центру, достигая максимума на окружности, представляющей собой геометрическое место точек центров сечений тороидальной полости, ортогональных указанной окружности. Такое распределение напряженности магнитного поля по сечениям тороидальной полости, как указывалось выше, обусловлено, во-первых, обращением к тороидальной полости магнитных полюсов всех четырех ферромагнитных тороидов ОДНОГО ЗНАКА магнитной полярности, во-вторых, такой косокруговой намагниченностью этих ферромагнитных тороидов, при которой все векторы магнитной индукции наклонены к соответствующим их магнитным полюсам в одну и ту же сторону по криволинейной координате, то есть либо по правому кругу, либо по левому, что обусловлено характером косокруговой намагниченности этих ферромагнитных тороидов при их изготовлении как постоянных магнитов из магнитотвердого ферромагнетика [8-10], выполненных в форме тороидов с соответствующей геометрией.

Укажем более подробно свойства и организацию косокругового намагничивания (ККН) ферромагнитных тороидов на примере намагничивания первого и второго тороидов второй пары тороидов.

Векторы ККН, исходящие из произвольных точек на окружности и лежащих на плоскости торца тороида, образованные ортогоналями и касательными к данным точкам окружности, располагаются под одинаковыми КОСЫМИ углами к касательным, проведенным к данным точкам. Угол наклона вектора к соответствующей его касательной определяется соотношением его нормальной и тангенциальной составляющих - проекциями вектора на соответствующие ортогональ и касательную к данной точке окружности.

Совокупность окружностей, осесимметричных кольцевой грани ферромагнитного тороида (оси его симметрии), лежит в плоскости грани этого тороида, и все векторы, исходящие из точек, лежащих на совпадающих по направлению радиусах этих окружностей, имеют одинаковый угол наклона к соответствующим касательным, проведенным к указанным точкам окружностей, то есть являются взаимно параллельными для каждого из радиальных направлений, если соотношения для ортогональных и тангенциальных составляющих векторов сохраняются неизменными для всех точек, расположенных на плоской грани ферромагнитного тороида.

Это условие выполняется, если во всех дифференциальных объемах ферромагнитного вещества тороида намагничивание осуществляется одновременно действием однородного соленоидального и вихревого (тороидального) насыщающих магнитных полей для первого и второго тороидов второй пары тороидов.

Вариацией значений напряженности этих двух магнитных полей можно изменять указанные углы наклона векторов магнитной индукции в тороиде с наведенной ККН в широких пределах - π/2<Θ<π/2. При Θ=0 отсутствует косокруговая намагниченность.

Указанное выше относится к ККН на плоских торцах ферромагнитных тороидов 3 и 4. Аналогичные доводы относятся к ККН на боковых круглых гранях тороидов 1 и 2. Изменяются лишь схемы намагничивания с использованием разных по конструкции электромагнитов - первого (второго) и третьего.

Способы осуществления ККН ферромагнитотвердых тороидов (например, ферритовых колец) известны из работ автора [5-7] и заключаются в помещении ферромагнитного тороида с намотанной на него спиральной обмоткой в соленоид, обмотка которого последовательно соединена с указанной спиральной обмоткой на ферромагнитном тороиде и подключена к источнику постоянного тока, создающего насыщающее магнитное поле для ферромагнетика тороида. Переключением спиральной обмотки тороида ее начала и конца к обмотке соленоида можно изменить наклон векторов намагничивания относительно плоских граней тороидов по правому или левому кругам. Для получения косокругового намагничивания на боковых поверхностях ферромагнитных тороидов последние с намотанными на них спиральными обмотками помещают в кольцевой магнитный зазор электромагнита (наподобие звуковой катушки в электромагнитных динамиках), обмотку которого также соединяют последовательно со спиральной обмоткой тороида к источнику постоянного намагничивающего тока. В качестве ферроматериалов можно использовать различные соединения, например SmСо3, NdFeB, AlNiCo и другие.

В полученных указанным способом тороидальных магнитных полях можно проводить исследования динамики поведения однополярных магнитных жидкостей, содержащих искусственно созданные на основе нанотехнологии магнитные монополи. В образованном заявляемым способом магнитном поле такие магнитные частицы будут испытывать постоянное во времени действие сил, образуемых от магнитного взаимодействия таких частиц с тороидальным магнитным полем в свободном пространстве полого тороида, заполненного однополярной магнитной жидкостью. При этом вся жидкость постепенно приходит в однонаправленное ламинарное движение внутри тороидальной полости и ее скорость течения доходит до определенного установившегося значения в центральной по сечению части полого тороида. Поскольку по известным гидродинамическим законам жидкость, соприкасающаяся со стенками тороидальной полости, в указанном движении участия не принимает и по сечению полости имеет место распределение установившихся скоростей течения жидкости, то в системе движущейся жидкости возникает вязкое трение частиц жидкости между собой, вследствие чего, с одной стороны, возникает установившийся процесс течения жидкости при равенстве сил магнитного тяготения и вязкого трения, интегрированных по всему объему тороидальной полости, а с другой, стороны происходит нагревание магнитной жидкости из-за вязкого трения. При этом возникает вопрос в теоретической физике, каким образом теплоизлучение и механическая работа, связанная с движением массы магнитной жидкости, согласуется с законом сохранения и превращения энергии, если учитывать тот бесспорный факт, что энергия магнитного поля, создаваемая постоянными магнитами такого устройства, не затрачивается, так как эти магнитны практически не размагничиваются (исключая естественное «старение» магнитов). Ответ на этот вопрос имеет принципиальное значение. При этом надлежит признать, что либо монополи не существуют в природе и не могут быть синтезированы искусственно, либо энергия черпается из вакуумного поля, населенного, как установлено современной физикой, безмассовыми голдстоуновскими частицами, которые при нарушении симметрии могут превращаться в массовые частицы-лептоны и кварк-глюонную плазму или в аннигиляционном процессе с виртуальной массой трансформируемых бозонов вакуумного поля непосредственно в энергию при каталитическом действии магнитного поля [11-17]. Однако существование природных монополей доказано как возможное [18-20] и, по мнению заявителя, их искусственные аналоги можно воссоздать лабораторно. Поэтому остается предполагать, что вакуумное поле может рассматриваться в будущем в качестве поставщика энергии, как об этом заявляли и другие авторы [21-23].

Литература

1. Лагутин А.С., Ожогин В.И. Сильные импульсные магнитные поля в физическом эксперименте, М.,1988;

2. Сильные и сверхсильные магнитные поля и их применение, пер. с англ., М., 1988;

3. Рабинович М.С. Экспериментальные исследования на стеллараторах, в кн.: Итоги науки и техники, сер. Физика плазмы, т.2, М., 1981, с.6;

rnrnrnrnrnrnrnrnrn

4. Шафранов В.Д. Тороидальные системы для управления термоядерного синтеза, в кн.: Итоги науки и техники, сер. Физика плазмы, т.8, М., 1988, с.131;

5. Меньших О.Ф. Способ косокругового намагничивания ферромагнитного тороида, патент РФ  2391730, опубл. в бюлл.  16 от 10.06.2010;

6. Меньших О.Ф. Способ косокругового намагничивания ферромагнитного тороида, патент РФ  2392681, опубл. в бюлл.  17 от 20.06.2010.

7. Ментших О.Ф. Способ косокругового намагничивания ферромагнитного тороида, патент РФ  2451351, опубл. в  14 от 20.05.2012;

8. А.А.Преображенский, Е.Г.Биширд Магнитные материалы и элементы, 3 изд., М., 1986;

9. И.Е.Февралева. Магнитотвердые материалы и постоянные магниты, К., 1969;

10. Постоянные магниты, Справочник, М., 1971;

11. Higgs P.W., Broken symmetries and the masses of gauge bosons, «Phys.Rev.Let.», 1964, v.12, p.132;

12. Englert F., Brout R., Broken symmetry and the mass of gauge vector mesons, Phys.Rev.Lett., 1964, v.13, p.321;

13. Guralnic G.S., Hagen C.R., Kibble T.W.B., Global conservation laws and massless particles, Phys.Rev.Lett, 1964, v.13, p.585;

14. L3 Collaboration, Phys. Reports, 1993, v.236, p.1.

15. Коулмен С. Тайная симметрия: введение в теорию спонтанного нарушения симметрии и калибровочных полей, в сб.: Квантовая теория калибровочных полей, пер. с англ., М., 1977;

16. Бернстейн Дж. Спонтанное нарушение симметрии, калибровочные теории, механизм Хиггса и т.п., М., 1978;

17. Славнов А.А., Фаддеев Л.Д. Введение в квантовую теорию калибровочных полей, 2-ое изд., М., 1988;

18. Монополь Дирака. Сб. ст., пер. с англ., М., 1970;

19. Стражев В. И., Томильчик Л. М. Электродинамика с магнитным зарядом. Минск 1975;

20. Коулмен С. Магнитный монополь пятьдесят лет спустя, пер. с англ "УФН" 1984 т. 144, с.277.

21. Рощин В.В., Годин С.М. Устройство для выработки механической энергии патент РФ 2155435 от 27.10.1999 г.

22. Леонов B.C. Способ создания тяги в вакууме , патент РФ 2185526 от 20.06.2002.

23. Леонов B.C. Теория упругой квантованной среды, ч.2, ИСТОЧНИКИ ЭНЕРГИИ">Новые источники энергии. - Минск, 1997, с.93-104, рис.24.

Формула изобретения

Способ создания тороидального магнитного поля, состоящий в том, что склеивают между собой две пары соосно установленных магнитотвердых ферромагнитных тороидов с прямоугольной формой сечения так, что в первой паре тороиды одинаковой толщины вставляют друг в друга с зазором между внешним диаметром первого тороида и внутренним диаметром второго тороида первой пары, а одинаковыми по габаритам тороидами второй пары перекрывают их плоскими гранями указанный зазор первой пары тороидов с обеих сторон этого зазора, образуя тороидальную полость между четверкой тороидов, причем на всех четырех тороидах предварительно наматывают катушки их намагничивания по правому или левому кругам в зависимости от направления тока намагничивания в них, катушку первого тороида первой пары тороидов соединяют с катушкой первого электромагнита, образующего радиально-кольцевое магнитное поле, в которое помещают первый тороид первой пары тороидов и производят его намагничивание постоянным током, насыщающим ферромагнетик первого тороида, аналогичные операции осуществляют со вторым тороидом первой пары тороидов, используя при этом второй электромагнит с другими габаритами кольцевого зазора, соответствующими габаритам второго тороида первой пары тороидов, а затем катушки намагничивания по правому или левому кругам первого и второго тороидов второй пары соединяют последовательно между собой и с катушкой третьего электромагнита, образующего однородное соленоидальное магнитное поле, ортогональное плоским граням первого и второго тороидов второй пары тороидов, помещенных в указанное магнитное поле третьего электромагнита, и производят намагничивание второй пары тороидов постоянным током, насыщающим ферромагнетик тороидов второй пары, а после указанного намагничивания со всех четырех тороидов снимают катушки намагничивания по правому или левому кругам, а склеивание тороидов между собой производят так, что все одноименные магнитные полюсы обращают в образующуюся тороидальную полость с одинаковыми направлениями тангенциальных составляющих векторов намагниченности всех четырех тороидов по правому или левому кругам.

Имя изобретателя: Меньших Олег Фёдорович
Имя патентообладателя: Меньших Олег Фёдорович
Почтовый адрес для переписки: 182540, Псковская обл., Невельский р-н, пос. Опухлики, д. 170, кв. 17, О.Ф. Меньших
Дата начала отсчета действия патента: 18.09.2012

Разместил статью: admin
Дата публикации:  11-03-2014, 16:48

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Бесконтактный электростатический магнитный подшипник
Изобретение относится к области машиностроения и может быть использовано в подшипниковых узлах. Изобретение позволяет создать подшипник, имеющий высокий срок службы и обеспечивающий высокую устойчивость к осевым и радиальным нагрузкам при минимизации габаритов и веса. Кроме этого, представленный подшипник работает практически бесшумно и обладает высокой устойчивостью к загрязнениям. Ротор и статор выполнены в виде магнитов с постоянной осевой намагниченностью в форме корпусных тел вращения,...

Сплав для постоянных магнитов
Изобретение относится к области металлургии, в частности к сплавам для постоянных магнитов. Сплав для постоянных магнитов содержит, масс.%: кобальт 34,5-35,5, никель 14,0-14,5, медь 3,8-4,2, алюминий 7,0-7,5, титан 5,0-5,5, сера 0,15-0,25, олово 0,1-0,2, гафний 1,0-2,0, железо - остальное. Сплав характеризуется повышенными магнитными характеристиками и низким температурным коэффициентом индукции....








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: Летом жарко, а зимой? (очень жарко или холодно)
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Способ получения аморфных магнитных пленок Co-Р

Способ получения аморфных магнитных пленок Co-Р Изобретение относится к химическому осаждению аморфных магнитных пленок Co-Р, например, на полированное стекло и может быть использовано в…
читать статью
Магниты и электромагниты
Магнитный тонер

Магнитный тонер Изобретение относится к магнитному тонеру. Магнитный тонер содержит частицы магнитного тонера, содержащие связующую смолу и магнитную основу и…
читать статью
Магниты и электромагниты
Ферромагнитная краска

Ферромагнитная краска Назначение: для покрытия ученических досок. Сущность изобретения. Ферромагнитная краска содержит олифу или лак на основе синтетического полимера 30 -…
читать статью
Магниты и электромагниты
Способ получения статического сверхсильного магнитного поля А.Б. Бережного-Б.Н. Игнатова

Способ получения статического сверхсильного магнитного поля А.Б. Бережного-Б.Н. Игнатова Способ получения статического сверхсильного магнитного поля А.Б. Бережного - Б.Н. Игнатова, заключающийся в последовательном выполнении операций:…
читать статью
Магниты и электромагниты
Сплав для постоянных магнитов

Сплав для постоянных магнитов Изобретение относится к области металлургии, в частности к сплавам для постоянных магнитов. Сплав для постоянных магнитов содержит, масс.%: кобальт…
читать статью
Технологии плавки и сплавы, Магниты и электромагниты
Катушка индуктивности

Катушка индуктивности Изобретение относится к области электротехники, в частности к выполнению катушки индуктивности для высоковольтного импульсного электрооборудования.…
читать статью
Магниты и электромагниты
Способ намотки соленоида сильного магнитного поля

Способ намотки соленоида сильного магнитного поля Изобретение относится к технике сильных импульсных магнитных полей и может быть использовано для создания как статических, так и импульсных…
читать статью
Магниты и электромагниты
Магнитный редуктор, содержащий соосно установленные ведущий и ведомый валы

Магнитный редуктор, содержащий соосно установленные ведущий и ведомый валы Использование: машиностроение. Сущность изобретение: магнитный редуктор содержит корпус, в котором на подшипниках установлены ведущий вал с ведущим…
читать статью
Магниты и электромагниты
Устройство для защиты от электромагнитного излучения

Устройство для защиты от электромагнитного излучения Изобретение относится к электронной технике и может быть использовано для создания экранов и панелей, поглощающих электромагнитное излучение (далее…
читать статью
Магниты и электромагниты
Способ изготовления постоянного магнита

Способ изготовления постоянного магнита Способ изготовления для постоянного магнита включает этапы: а) изготовление постоянного магнита (1), (b) разламывание постоянного магнита (1) для…
читать статью
Магниты и электромагниты
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
miha111
Публикаций: 1481
Комментариев: 0
pi31453_53
Публикаций: 9
Комментариев: 0
vikremlev
Публикаций: 1
Комментариев: 0
АНАТОЛИЙ
Публикаций: 0
Комментариев: 0
Patriothhv
Публикаций: 0
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru