Ноу-хау разработки, а именно данное изобретение автора относится к области порошковой металлургии и может быть использовано в машино- и приборостроительной, радио- и электротехнической, химической, текстильной и других отраслях промышленности. Магнитоуправляемый эластичный композиционный материал на основе каучука содержит, мас.час.: натуральный и/или синтетический каучук 30-75; порошковое железо, его магнитный оксид или феррит 10-40; пластификатор -углеводородное, силиконовое масло или...
Область деятельности(техники), к которой относится описываемое изобретение
Изобретение относится к области получения магнитных масел на основе высокодисперсного магнетита. Изобретение может быть использовано в машиностроении, приборостроении, в медицине и т.д.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Известен способ получения смазочного материала, включающий формирование антифрикционного покрытия на контактирующих трущихся поверхностях из ультрадисперсной композиции путем размещения между трущимися поверхностями смеси связующего из минерального масла и предварительно измельченной композиции упрочняющих веществ. Композиция содержит легирующие элементы, представляющие собой окись лантана Fe3O3, окись цинка ZnO, триэтаноламин ТЭА, двуокись титана TiO2 -анатаз и серпентин, химический состав которого состоит из окиси магния MgO, двуокиси кремния SiO2, примесей окислов железа Fe2O 3 и никеля NiO и воды. Смесь связующего из минерального масла и композиции получают путем введения композиции в связующее в режиме автоколебаний с генерированием гидродинамических колебаний давления в диапазоне частот 6-50000 Гц с получением дисперсно-упорядоченной композиции с размером частиц 10-100 нм, а формирование антифрикционного покрытия осуществляют путем азотирования при трении контактирующих поверхностей за счет крекинга триэтаноламина с образованием поверхностных нитридов титана, железа и никеля и лантанидов железа и никеля (RU 2421547, кл. С23С 26/00, 20.06.2011).
Недостатками данной антифрикционной композиции являются: низкая способность удерживаться в зоне трения, высокий коэффициент трения, абразивный износ контактирующих поверхностей в процессе образования смазочной композиции.
Наиболее близким по технической сути и достигаемому результату является принятый за прототип способ получения магнитного масла (RU 2016055, кл. С10М 169/04, 15.07.1994), которое получают обработкой магнетита в диэфире карбоновой кислоты в присутствии водного раствора 12-оксистеариновой кислоты или 12-гидрокси-Δ 9-октадеценовой кислоты при нагревании до температуры выпаривания воды с последующей термообработкой смеси при 110-180°С в течение 10-40 ч и охлаждением полученного масла при следующем содержании компонентов в масле, мас.%:
- магнетит - 15-30;
- олигоэфир, полученный на основе 12-оксистеариновой кислоты или 12-гидроки-Δ 9-октадеценовой кислоты - 10-40;
rnrnrnrnrnrnrnrnrn
- диэфир карбоновой кислоты - остальное.
Однако данное масло имеет большое количество агломерированных магнитных частиц, низкую прочность адсорбированных слоев ПАВ и малую температурно-временную стабильность. Как следствие, это ведет к высокому коэффициенту трения при использовании данного масла, низкой износостойкости конструкционных деталей узлов трения, относительно короткому времени работы трибосопряжений в машинах и механизмах. Также при получении магнитного масла требуется достаточно длительная по времени термообработка смеси, что ведет к высокой энергоемкости технологического процесса.
Задачей изобретения является создание нового способа получения магнитного масла с улучшенными триботехническими свойствами.
Технический результат - повышение температурно-временной стабильности магнитных масел, снижение коэффициента трения, интенсивности изнашивания приграничном трении, а также снижение энергоемкости технологического процесса их получения.
Поставленная задача и указанный технический результат достигаются тем, что в способе получения магнитного масла, включающем обработку магнетита в диэфире карбоновой кислоты в присутствии водного раствора 12-оксистеариновой кислоты или 12-гидрокси-Δ 9-октадеценовой кислоты при нагревании до температуры выпаривания воды с последующей термообработкой смеси при 110-180°С и охлаждением полученного масла, содержащего магнетит - 15-30 масс.%, олигоэфир, полученный на основе 12-оксистеариновой кислоты или 12-гидроки-Δ 9-октадеценовой кислоты 10-40 мас.% и диэфир карбоновой кислоты - остальное, согласно изобретению полученную смесь подвергают давлению 100-150 МПа и нагреву в течение 3-17 ч, с последующим снятием давления и продолжением термообработки в течение 5-20 ч.
Воздействие высокого давления с одновременным нагревом компонентов смеси позволяет ускорить процесс получения магнитного масла, а также создать условия образования на поверхности частиц магнетита многомерной структуры ПАВ (поверхностно-активные вещества) - стабилизатора. Давление активирует процесс пептизации, процесс адсорбции ПАВ, меньше остается агломератов; повышается толщина адсорбированного слоя и ПАВ занимает всю свободную поверхность дисперсных частиц, т.к. процесс десорбции молекул проходит менее активно. Повышается плотность упаковки молекул ПАВ в адсорбированном слое (более устойчивое состояние за счет того, что изменяется конформное состояние молекул). Повышается прочность адсорбированных слоев из-за увеличения межмолекулярных связей в молекулах
За счет снижения склонности дисперсных частиц к коагуляции под действием электрических и магнитных сил повышается температурно-временная стабильность магнитных масел из-за более сильного стерического отталкивания (структурно-механический барьер) и более надежного адсорбционного слоя. Кроме того, снижается коэффициент трения, интенсивность изнашивания приграничной зоны при трении, так как меньше проявляется абразивное действие частиц, существенно меньше количество крупных агрегатов из частиц; магнитное масло становится более долговечным. Прочные адсорбционные оболочки не позволяют частицам под действием трения агломерироваться, не происходит термоактивированный процесс перехода высокомагнитных частиц Fe 3O4 в низкомагнитные Fe3O3 , сокращается время термообработки.
Выбор диапазона давления обусловлен следующими факторами. Давление менее 100 МПа практически не оказывает влияние на процесс пептизации, адсорбции ПАВ, упаковку ПАВ, скорость химической реакции, а увеличение давления выше 150 МПа не приводит к существенному улучшению триботехнических свойств магнитного масла и сокращению времени термообработки, а ведет только к повышению энергозатрат.
Выбор времени термообработки на первой стадии обусловлен тем, что за время менее 3 часов практически не происходит увеличения плотности упаковки молекул ПАВ-стабилизатора в адсорбированном слое магнетита, а также его толщины, а после 17 часов плотность упаковки молекул ПАВ-стабилизатора в адсорбированном слое и его толщина достигает практически максимального значения.
Время термообработки после снятия давления менее 5 часов не достаточно для удаления вытесненной воды и стабилизации коллоида, а превышение времени более 20 часов не приводит к существенному улучшению триботехнических свойств магнитного масла и сокращению времени термообработки, а ведет только к повышению энергозатрат.
rnrnrnrnrnrnrnrnrn
Способ получения магнитного масла поясняется следующими графиками, где на фиг.1 представлена зависимость коэффициента трения в трибосопряжении от температуры магнитного масла; на фиг.2 - зависимость интенсивности изнашивания в трибосопряжении от температуры магнитного масла.
зависимость коэффициента трения в трибосопряжении от температуры магнитного масла
зависимость интенсивности изнашивания в трибосопряжении от температуры магнитного масла.
Способ получения магнитного масла иллюстрируется следующими примерами
Пример. 1
Для получения магнитного масла (ММ1) брали 22 г (22 мас.%) магнетита, обрабатывали 25 г (25 масс.%) олигоэфира, полученный на основе 12-оксистеариновой кислоты. Полученную смесь добавляли в 53 г (53 масс.%.) диэфира карбоновой кислоты (например, дтоктилсебацинат, дибутилсебацинат, диоктилфталат, динонилфталат). Затем образованный коллоид подвергали давлению, плавно увеличивая его до 100 МПа, нагревали до температуры 110°С и выдерживали в течение 3 ч. В результате интенсивно проходил процесс пептизации, на поверхности частиц магнетита образовывалась многомерная структура ПАВ - стабилизатора. После этого уменьшали давление до атмосферного и продолжали нагревание смеси при температуре 110°С в течение 5 ч. В результате вытесненная вода удалялась и происходила окончательная стабилизация коллоида. По окончании смесь охлаждали до комнатной температуры.
Триботехнические свойства магнитного масла (ММ1) в сравнении с магнитным маслом, полученным по известному способу (ММ01) при температуре термообработки 110°С в течение 10 ч при следующем содержании компонентов в масле, мас.%:
- магнетит - 22;
- олигоэфир, полученный на основе 12-оксистеариновой кислоты или 12 - гидроки - Δ 9 - октадеценовой кислоты - 25;
- диэфир карбоновой кислоты - остальное;
представлены на фиг.1, 2. Испытания проводились по схеме трение скольжение торец цилиндра - плоскость. Плоскость - бронза ОСЦ5, торец цилиндра - Ст.3. Линейная скорость скольжения 0,24 м/с, давление 4,42 МПа. Масло подавалось и удерживалось на дорожке трения неоднородным магнитным полем с аксиальной симметрией.
Пример. 2
Пример осуществлялся аналогично примеру 1, но смесь, включающую магнетит, олигоэфир, полученный на основе 12 - гидроки - Δ 9 - октадеценовой кислоты, и диэфир карбоновой кислоты (например, дтоктилсебацинат, дибутилсебацинат, диоктилфталат, динонилфталат), выдерживали при давлении 125 МПа и температуре 145°C в течение 10 ч; после этого уменьшали давление до атмосферного и продолжали нагревание при температуре 145°C в течение 12,5 ч.
Триботехнические свойства магнитного масла (ММ2) в сравнении с магнитным маслом, полученным по известному способу (ММ02) при температуре термообработки 145°C в течение 25 ч при содержании компонентов в масле, указанном в примере 1, представлены на фиг.1, 2. Испытания проводились в условиях, указанных в примере 1.
Пример. 3
Пример осуществлялся аналогично примеру 1, но смесь, включающую магнетит, олигоэфир, полученный на основе 12 - гидроки - Δ 9 - октадеценовой кислоты, и диэфир карбоновой кислоты (например, дтоктилсебацинат, дибутилсебацинат, диоктилфталат, динонилфталат), выдерживали при давлении 150 МПа и температуре 180°C в течение 17 ч; после этого уменьшали давление до атмосферного и продолжали нагревание при температуре 180°C в течение 20 ч.
rnrnrnrnrnrnrnrnrn
Триботехнические свойства магнитного масла (ММ3) в сравнении с магнитным маслом, полученным по известному способу (ММ03) при температуре термообработки 180°C в течение 40 ч при содержании компонентов в масле, указанном в примере 1, представлены на фиг.1, 2. Испытания проводились в условиях, указанных в примере 1.
В настоящее время способ получения магнитного масла находится на стадии опытно-лабораторных испытаний.
Формула изобретения
Способ получения магнитного масла, включающий обработку магнетита в диэфире карбоновой кислоты в присутствии водного раствора 12-оксистеариновой кислоты или 12-гидрокси-Δ 9-октадеценовой кислоты при нагревании до температуры выпаривания воды с последующей термообработкой смеси при 110-180°С и охлаждением полученного масла, содержащего магнетит - 15-30 мас.%, олигоэфир, полученный на основе 12-оксистеариновой кислоты или 12-гидроки-Δ 9-октадеценовой кислоты 10-40 мас.% и диэфир карбоновой кислоты - остальное, отличающийся тем, что полученную смесь подвергают давлению 100-150 МПа с одновременным нагревом в течение 3-17 ч с последующим снятием давления и дальнейшей термообработкой в течение 5-20 ч.
Имя изобретателя: Болотов Александр Николаевич (RU), Новиков Владислав Викторович (RU), Новикова Ольга Олеговна (RU), Мардян Мгер Владимирович (RU), Горлов Дмитрий Игоревич (RU) Имя патентообладателя: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тверской государственный технический университет" Почтовый адрес для переписки: 170026, г.Тверь, наб. А. Никитина, 22, ТвГТУ, каб.427, В.А. Стригиной Дата начала отсчета действия патента: 30.10.2012
Разместил статью: admin
Дата публикации: 27-12-2013, 06:06
Изобретение относится к области химического осаждения аморфных магнитных пленок Co-P, например, на полированное стекло и может быть использовано в вычислительной технике. Способ включает очистку стеклянной подложки, двойную сенсибилизацию в растворе хлористого олова с промежуточной обработкой в растворе перекиси водорода, активацию в растворе хлористого палладия, термообработку при температуре 150-450°C в течение 30-40 мин, осаждение магнитной пленки Co-P толщиной 180-200 нм на немагнитный...
Изобретение относится к химическому осаждению аморфных магнитных пленок Co-Р, например, на полированное стекло и может быть использовано в вычислительной технике в головках записи и считывания информации, в датчиках магнитных полей, в управляемых сверхвысокочастотных (СВЧ) устройствах: фильтрах, амплитудных и фазовых модуляторах и т.д. Способ включает очистку стеклянной подложки, двойную сенсибилизацию в растворе хлористого олова с промежуточной обработкой в растворе перекиси водорода и...
Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное энергией электромагнитных волн, которые также существуют изначально и материей, которая состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.
Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.
То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.
Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.
Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально?
Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.
От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.
Вначале было то, что существует изначально и никем не создавалось. А это
- безграничное пространство космоса
- безграничное время протекания множества процессов различной длительности
- электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя