Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Сплав для постоянных магнитов
Технологии плавки и сплавы, Магниты и электромагниты
Сплав для постоянных магнитов Изобретение относится к области металлургии, в частности к сплавам для постоянных магнитов. Сплав для постоянных магнитов содержит, масс.%: кобальт 34,5-35,5, никель 14,0-14,5, медь 3,8-4,2, алюминий 7,0-7,5, титан 5,0-5,5, сера 0,15-0,25, олово 0,1-0,2, гафний 1,0-2,0, железо - остальное. Сплав характеризуется повышенными магнитными характеристиками и низким температурным коэффициентом индукции....
читать полностью


» Изобретения Российской Федерации » Электроника и электротехника » Магниты и электромагниты
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
0
Добавить эту страницу в свои закладки на сайте »

Способ изготовления аморфного магнитного материала


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2406769

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к области изготовления аморфных магнитных материалов и их последующего модифицирования термической обработкой в присутствии внешнего магнитного поля.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Способ изготовления аморфного магнитного материалаК настоящему времени обычные металлургические способы не позволяют получать ферромагнитные материалы с высоким уровнем магнитных свойств, в частности, с минимальными магнитными потерями P, высокой магнитной проницаемостью µo, низкой коэрцитивной силой Нс, широким диапазоном величин магнитострикции. Применение таких материалов в электротехнических и радиоэлектронных устройствах, в качестве магнито-проводов, позволило бы уменьшить их размеры, расширить частоты перемагничивания и, как следствие, развивать эти направления на новом качественном уровне.

Значимые решения этих проблем могут быть связаны только с комплексным решением, направленным на создание новых ферромагнитных материалов, на основе процентного изменения легирующего состава и с разработкой новых способов и технологий их изготовления.

Известен способ улучшения магнитных свойств крупнозернистых текстурированных ферромагнитных материалов за счет измельчения зерна, путем равномерного нанесения поверхностных полосок, преимущественно поперек оси текстуры, с помощью локальной лазерной обработки, и воздействия знакопеременного магнитного поля промышленной частоты 50-60 Гц. В результате, например, было обеспечено снижение магнитных потерь в материале на 8-12%

Однако этот способ обеспечивает незначительное изменение свойств. Он требует для реализации дополнительные устройства точного управления мощностью лазерного излучения. Другие недостатки способа связаны с уменьшением массы ферромагнитного материала и снижением его прочности [Заявка Японии,  61-49366, С21D 9/46, 1986].

Известен способ термообработки магнитопроводов из магнитомягких железокобальтовых сплавов типа 18 КХ и 49К2ФА, применяемых в электротехнике. Магнитопровод помещают в формующую оправу и устанавливают в вакуумную печь, нагревают до температуры Курнакова, проводят изотермическую выдержку при 620-800°С в течение 2-5 часов и охлаждают с регламентированной скоростью 150-600°С/ч в магнитном поле или без него. В результате улучшаются механические свойства сплавов в 1,5-2 раза при сохранении или улучшении основных магнитных свойств. [В.Н.Воробьев и др. А.с. СССР,  1592353. Б.и.  12, 1990].

rnrnrnrnrnrnrnrnrn

Однако и в этом случае, изобретение направлено на решение частной задачи, связанной с повышением механических свойств магнитопроводов, т.е. их жесткости. Эти изделия изготавливают из тонких лент или пластин, что приводит их к частичным прогибам и деформированию, в результате, первоначально заложенные в материале заготовок магнитные свойства изменяются. Таким образом, предложенное в изобретении решение только восстанавливает магнитные свойства материалов, а не повышает их. Кроме этого, данный способ трудоемок, осуществляется не в технологической цепочке изготовления сплавов, следовательно, для его реализации требуются дополнительные энерго- и трудозатраты.

Наиболее близким к заявляемому по технической сущности и достигаемому результату является способ изготовления аморфной магнитной ленты состава Fe81Si4B13C2 шириной 10 мм и толщиной 21 мкм, путем быстрого охлаждения расплава одновалковым спиннингованием. Ленту отжигают при 250-350°С в продольном постоянном магнитном поле напряженностью 2000-2500 А/и, выдерживают 1-2 мин и охлаждают в поле со скоростью 200-300°С/ч. Затем наносят магнитоактивную неорганическую суспензию, содержащую оксид алюминия или оксид лития и протягивают ленту через щель-фильеру с зазором 0,1 мм, высушивают при 120°С в течении 40 с и отжигают при 150-300°С с выдержкой 120-20 с в окислительной среде (на воздухе) [Ю.Н.Драгошанский, Т.А.Ханжина. Патент РФ 1705407. А1. 15.01.92].

В результате применения данного способа, при удовлетворительной пластичности ленты получают снижение магнитных потерь Р до 60% от 7,9 Вт/кг (в отожженном материале без ТМО и нанесения покрытия), снижение коэрцитивной силы Нс на 55% от 7,0 А/м, рост максимальной проницаемости µmax в 2 раза от 66000 Гс/Э.

Однако при достаточно высоких результатах обработки материалов, данным способ является трудоемким, требующим для реализации высокую квалификацию обслуживающего персонала разной профессиональной направленности. Кроме этого, применение одновалкового спиннингования, позволяет получить качественный анизотропный материал толщиной только до 20-22 мкм. В этом случае, при техническом увеличении толщины материала, закалочные процессы будут проходить особенно не равномерно, что приведет к появлению значительных закалочных напряжений и к снижению магнитных свойств материала.

В основу изобретения положена задача получения новых ферромагнитных материалов, за счет применения новых способов и технологий их изготовления, обеспечивающих максимальные показатели улучшения физико-механических свойств, в том числе к длительной устойчивости при эксплуатационных воздействиях.

Поставленная задача решается тем, что в известном способе изготовления ленты из аморфного магнитомягкого сплава на основе железа, включающем быстрое охлаждение расплава спиннингованием и отжиг, при этом спиннингование выполняют двумя валками, поверхности которых расположены параллельно друг другу с зазором, а отжиг ленты осуществляют в вакууме при температуре 340-420°С в течении 45-30 минут; затем ленту нагревают до температуры 520-540°С, включают переменное магнитное поле частотой 50-60 кГц, выдерживают в течении 30-90 мин и охлаждают до комнатной температуры в магнитном поле со скоростью 200°С/час; при этом напряженность переменного магнитного поля поддерживают равным 10-20-кратному увеличению коэрцитивной силы сплава.

Физическая сущность способа заключается в следующем: получение ленты из аморфного магнитомягкого сплава на основе железа и разных химических элементов, с близкой к нулю магнитострикцией насыщения X,s связано с закалкой из расплава, разбрызгиваемого на поверхности медного массивного спиннингующегося двухвалкового устройства, что позволяет получить качественный анизотропный материал толщиной до 30-35 мкм и более.

Для снятия закалочных напряжений отжиг ленты осуществляют в вакууме при температуре ниже точки Кюри аморфного сплава.

Основными факторами, определяющими магнитные свойства аморфных сплавов, являются структурная гомогенизация и стабилизация доменной структуры вследствие направленного упорядочения атомов, вакансий и дефектов. Однако эффект стабилизации доменной структуры уменьшает подвижность границ доменов при перемагничивании и негативно сказывается на гистерезисных свойствах. Кроме этого, в аморфных сплавах может наблюдаться температурно-временная нестабильность их магнитных свойств.

Для решения этих проблем ленту подвергают модифицированию в условиях термомагнитной обработки. Для чего ее нагревают до температуры выше точки Кюри и выдерживают определенное время, происходит кристаллизация и формируется материал уже с нанокристаллической атомной и стабилизированной доменной структурами. Причем для получения объемных нанокристаллических структур, коррелирующих с максимальными показателями улучшения магнитных свойств материала, необходимо применять оптимальные температуру нагрева и время выдержки. Для дестабилизации доменной структуры применяют переменное магнитное поле. В этом случае при частотах выше 50 кГц перемагничивание осуществляется путем неоднородного вращения намагниченности, и анизотропия наводиться уже не будет. При охлаждении ленты до комнатной температуры в магнитном поле этот эффект закрепляется.

rnrnrnrnrnrnrnrnrn

Применение комплексного подхода в решении задач усовершенствования ферромагнитных материалов в последовательности: вначале изготовление ленты из аморфного магнитомягкого сплава на основе железа, а затем модифицирование, существенно повышает физико-механические свойства и значительно превышает суммарный результат, достигаемый на отдельных этапах обработки.

Таким образом, заявляемый способ изготовления ленты из аморфного магнитомягкого сплава на основе железа позволяет получить новый материал с высоким уровнем физико-механических свойств, более устойчивых к эксплуатационным воздействиям. Данный эффект достигается за счет применения новых технологий и режимов обработки материала, и не требует больших технических затрат.

Пример осуществления способа изготовления аморфного магнитного материала

Для изготовления ленты из аморфного магнитомягкого сплава на основе железа применяют быстрое охлаждение расплава двухвалковым спиннингованием в противоположных направлениях, поверхности которых расположены параллельно друг другу с зазором. Для повышения прочностных свойств сплава без снижения пластичности ленту получают толщиной до 30-35 мкм, шириной до 10 мм. Затем для снятия закалочных напряжений ленту отжигают в вакууме при температуре 340-420°С в течение 45-30 минут.

С целью повышения магнитных свойств и температурно-временной стабильности ленту модифицируют, а именно нагревают до 520-540°С, выдерживают и формируют материал с нанокристаллической атомной и стабилизированной доменной структурами. Затем для снижения анизотропности, присущей стабилизированной доменной структуре, проводят дестабилизацию структуры. Для этого применяют переменное магнитное поле частотой 50-60 кГц, причем частота поля возрастает при толщине материала менее 25 мкм, выдерживают в течение 30-90 мин и охлаждают до комнатной температуры в магнитном поле со скоростью 200°С/час. Для получения объемных нанокристаллических структур применяют оптимальную температуру нагрева сплава, а для дестабилизации структур оптимальное время выдержки. Напряженность переменного магнитного поля поддерживают равным 10-20-кратному увеличению коэрцитивной силы данного сплава.

Способ опробован на сплавах Fe69Cu1Nb1,5 Mo1,5Si13,5B9Co4,5 Fe73,5Cu1Nb3Si13,5 B9, Fe73,5Cu1Nb1,5 Mo1,5Si13,5B9, в таблице представлены магнитные свойства нанокристаллических сплавов с дестабилизированной доменной структурой

Сплав Обработка µ0 Нс, А/м Р0,2/20000 Вт/кг
Fe 73,5Cu1Nb3Si13,5B 9 Отжиг аморфного сплава, 340-420°С, 45-30 мин 10000 1,2 11,0
  Отжиг, 540°С, 30-90 мин 40000 0,56 8.0
  ТМО в Н ~ 53000 0.48 5.5
Fe 73,5Cu1Nb1,5Mo1,5Si 13,5B9 Отжиг, 540°С, 30-90 мин 42000 0.48 7.5
  ТМО в Н ~ 60000 0.32 4.5
Fe 69Cu1Nb1,5Mo1,5Si 13,5B9Co4,5 Отжиг, 520°С, 30 мин 45000 0,4 7.5
  ТМО в H ~ 60000 0.24 4.0

Таким образом, заявляемый способ изготовления ленты из аморфного магнитомягкого сплава на основе железа позволяет, получить новый материал с высоким уровнем физико-механических свойств, более устойчивых к эксплуатационным воздействиям. Существенное увеличение качества нового материала, при относительно малых технических и энергетических затратах на его обработку, характеризует данный способ как перспективный для широкого внедрения на производстве, что позволит развивать электротехнические и электронные устройства на новом качественном уровне.

Формула изобретения

Способ изготовления ленты из аморфного магнитомягкого сплава на основе железа, включающий быстрое охлаждение расплава спиннингованием и отжиг, отличающийся тем, что спиннингование выполняют двумя валками, поверхности которых расположены параллельно друг другу с зазором, а отжиг ленты осуществляют в вакууме при температуре 340-420°С в течение 45-30 мин, затем ленту нагревают до температуры 520-540°С, включают переменное магнитное поле частотой 50-60 кГц, выдерживают в течение 30-90 мин и охлаждают до комнатной температуры в магнитном поле со скоростью 200°С/ч, при этом напряженность переменного магнитного поля поддерживают равной 10-20-кратному увеличению коэрцитивной силы сплава.

Имя изобретателя: Пудов Владимир Иванович (RU), Драгошанский Юрий Николаевич (RU), Филиппов Борис Николаевич (RU), Потапов Анатолий Павлович (RU), Шулика Валентина Владимировна (RU)
Имя патентообладателя: Институт физики металлов Уральского отделения РАН
Почтовый адрес для переписки: 620041, г.Екатеринбург, ГСП-170, ул. С. Ковалевской, 18, ИФМ УрО РАН, В.И.Пудову
Дата начала отсчета действия патента: 23.12.2008

Разместил статью: admin
Дата публикации:  5-11-2013, 14:58

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Способ изготовления термостабильных редкоземельных магнитов
Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях. Осуществляют выплавку сплава и получение из него порошка. После чего порошок подвергают предварительному прессованию и спеканию при температуре на 30-100 К ниже температуры спекания с последующим помолом полученной заготовки совместно с 0.5-2.0 мас.% гидрида редкоземельного металла. После чего...

Электромагнитный привод
Изобретение касается электромагнитных приводов для высоковольтных вакуумных и элегазовых выключателей. Технический результат - увеличение быстродействия за счет уменьшения массы подвижного сердечника. Электромагнитный привод содержит магнитную систему, включающую в себя неподвижный основной магнитопровод, по крайней мере один постоянный магнит и подвижный сердечник, выполненный из двух частей, а также две катушки управления. Между частями подвижного сердечника установлен дополнительно введенный...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: 11-2+4=?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Магнитный редуктор, имеющий ротор быстрого вращения с постоянными магнитами

Магнитный редуктор, имеющий ротор быстрого вращения с постоянными магнитами Изобретение относится к электротехнике, к электромагнитным механизмам, а конкретно к бесконтактным магнитным редукторам, и может быть использовано в…
читать статью
Магниты и электромагниты
Устройство для защиты от электромагнитного излучения

Устройство для защиты от электромагнитного излучения Изобретение относится к электронной технике и может быть использовано для создания экранов и панелей, поглощающих электромагнитное излучение (далее…
читать статью
Магниты и электромагниты
Состав для редкоземельного магнита на связке и магнит на связке, изготовленный с использованием этого состава

Состав для редкоземельного магнита на связке и магнит на связке, изготовленный с использованием этого состава Изобретение относится к изготовлению спеченных магнитов на связке, в частности к магнитам, содержащим сплав редкоземельных элементов. Состав для…
читать статью
Магниты и электромагниты
Способ намотки соленоида сильного магнитного поля

Способ намотки соленоида сильного магнитного поля Изобретение относится к технике сильных импульсных магнитных полей и может быть использовано для создания как статических, так и импульсных…
читать статью
Магниты и электромагниты
Способ получения магнитной композиции

Способ получения магнитной композиции Изобретение относится к способу получения композиций, которые используются в промышленности строительных и конструкционных материалов, для защиты от…
читать статью
Магниты и электромагниты
Способ изготовления постоянного магнита

Способ изготовления постоянного магнита Способ изготовления для постоянного магнита включает этапы: а) изготовление постоянного магнита (1), (b) разламывание постоянного магнита (1) для…
читать статью
Магниты и электромагниты
Взрывомагнитный генератор сильных магнитных полей и токов

Взрывомагнитный генератор сильных магнитных полей и токов Взрывомагнитный генератор содержит деформируемую спираль, состоящую из двух соосных, расположенных друг над другом и индуктивно связанных частей.…
читать статью
Магниты и электромагниты
Магнитный материал и изделие, выполненное из него

Магнитный материал и изделие, выполненное из него Ноу-хау разработки, а именно данное изобретение автора относится к области порошковой металлургии, в частности, к магнитным материалам для постоянных…
читать статью
Магниты и электромагниты
Нанокомпозитный дисперсный магнитный материал

Нанокомпозитный дисперсный магнитный материал Изобретение относится к области создания новых структурированных нанокомпозитных материалов и может быть использовано, в частности, для получения…
читать статью
Магниты и электромагниты
Магнитная передача для редукторов или мультипликаторов

Магнитная передача для редукторов или мультипликаторов Изобретение относится к машиностроению и может быть использовано преимущественно для редукторов или мультипликаторов. Магнитная передача содержит…
читать статью
Магниты и электромагниты
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
pi31453_53
Публикаций: 9
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
Patriotjpa
Публикаций: 0
Комментариев: 0
kapriolree
Публикаций: 0
Комментариев: 0
gustavoytd
Публикаций: 0
Комментариев: 0
Mihaelsjp
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru