Изобретение относится к теплоэлектроэнергетике и может быть использовано в теплогенераторах для одновременного получения тепловой и электрической энергии в одном аппарате. Техническим результатом предлагаемого изобретения является повышение надежности и эффективности теплоэлектрического генератора. Технический результат достигается в теплоэлектрогенераторе, содержащем вертикальный корпус, состоящий из прямоугольного короба, выполненного из диэлектрического материала с низкой теплопроводностью,...
Область деятельности(техники), к которой относится описываемое изобретение
Предлагаемое изобретение относится к теплоэлектроэнергетике, а именно для повышения КПД теплогенератора путем одновременного получения тепловой и электрической энергии в одном аппарате.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Известен водогрейный котел (теплогенератор), содержащий размещенные в вертикальном корпусе топку, выполненные из труб экономайзер, боковые и потолочные экраны, соединенные с подводящим и отводящим коллекторами (патрубками) [Патент РФ 2150052, Мкл. F24H 1/34, 1998].
Недостатками известного теплогенератора являются невозможность одновременного получения в нем тепловой и электрической энергии.
Более близкой по технической сущности к предлагаемому изобретению является термоэмиссионная надстройка к тепловьм электростанциям с топкой котла (камерой сгорания) и парогенерирующими (трубами теплоносителя), содержащая термоэмиссионные преобразователи с анодными теплотоковыводами и узлы крепления указанных преобразователей к парогенерирущим трубам (трубами теплоносителя) [А.с. РФ 966791, Мкл. F24J 45/00, 1982].
Основными недостатками известного устройства являются сложная конструкций термоэмиссионного преобразователя (ТЭП), системы теплоотвода и узлов крепления его к трубам теплоносителя, что снижает его надежность и эффективность.
Техническим результатом предлагаемого изобретения является повышение надежности и эффективности теплоэлектрического генератора (ТЭГ).
rnrnrnrnrnrnrnrnrn
Технический результат достигается тем, что в теплоэлектрическом генераторе, содержащем вертикальный корпус с отводящим газоходом, камеру сгорания, трубы теплоносителя, термоэмиссионные преобразователи, теплотоковыводы и узлы крепления термоэмиссонных преобразователей к трубам теплоносителя, корпус состоит из прямоугольного короба, выполненного из диэлектрического материала с низкой теплопроводностью, внутри короба помещены ряды теплоэлектрических звеньев, торцы которых снаружи последовательно соединены между собой по горизонтали и вертикали калачами, причем каждое теплоэлектрическое звено представляет собой металлическую трубу теплоносителя, покрытую поочередно кольцевыми изоляционными слоями, каждый из которых выполнен из диэлектрического материала с высокой теплопроводностью, образуя зону охлаждения, диэлектрического материала с низкой теплопроводностью, образуя зону теплоизоляции, и диэлектрического материала с высокой теплопроводностью, образуя зону нагрева, соответственно, последняя, в свою очередь, покрыта металлической обечайкой, при этом в массиве всех трех кольцевых изоляционных слоев вокруг металлической трубы теплоносителя по ее длине помещены по очередности термоэмиссионные преобразователи большего и меньшего диаметров, каждый из которых состоит из большого двухслойного горячего кольца, слои которого плотно прижаты друг к другу и выполнены из двух разных металлов M1 и М2, расположенного в зоне нагрева и малого однослойного холодного кольца, выполненного из металла M1, расположенного в зоне охлаждения, слои двухслойных горячих колец термоэмиссионных преобразователей большего и меньшего диаметров, выполненные из металла M1, соединены с холодными однослойными кольцами упомянутых термоэмиссионных преобразователей радиальными перемычками, выполненными из металла M1, причем все термоэмиссионные преобразователи установлены таким образом, что их горячие и холодные кольца не касаются внутренней поверхности обечайки и наружной поверхности трубы теплоносителя, горячие кольца каждого термоэмиссионного преобразователи большего и меньшего диаметров соединены с холодными кольцами последующих термоэмиссионных преобразователей продольными перемычками, выполненными из металла М2, последние по счету термоэмиссионные преобразователи каждого теплоэлектрического звена соединены с первыми по счету термоэмиссионными преобразователями последующего теплоэлектрического звена электропроводкой, свободные концы термоэмиссионных преобразователей последнего верхнего и первого нижнего теплоэлектрических звеньев соединены с токовыводами, а свободные торцы их труб теплоносителя соединены с входным и выходным патрубками теплоносителя.
теплоэлектрический генератора (ТЭГ)
На фиг.1 и 2 представлены общий вид и разрез теплоэлектрического генератора (ТЭГ), на фиг.3-6 - основные узлы ТЭГ.
теплоэлектрический генератора (ТЭГ), разрез
Предлагаемый ТЭГ содержит вертикальный корпус 1, состоящий из прямоугольного короба 2, выполненного из диэлектрического материала с низкой теплопроводностью, соединенного сверху с отводящим газоходом (дымовой трубой) 3, снизу - с камерой сгорания 4, внутри которого помещены ряды теплоэлектрических звеньев (ТЭЗ) 5, торцы которых снаружи соединены между собой по теплоносителю по горизонтали и вертикали калачами 6 и 7, соответственно, причем каждое ТЭЗ 5 представляет собой металлическую трубу теплоносителя 8, покрытую поочередно кольцевыми изоляционными слоями, выполненными из диэлектрического материала с высокой теплопроводностью 9, образуя зону охлаждения, диэлектрического материала с низкой теплопроводностью 10, образуя зону теплоизоляции, и диэлектрического материала с высокой теплопроводностью 11, образуя зону нагрева, соответственно, в свою очередь, последняя покрыта металлической обечайкой 12, при этом в массиве слоев 9-11 вокруг металлической трубы 8 по ее длине помещены по очередности термоэмиссионные преобразователи (ТЭП) 13 большего диаметра, каждый из которых состоит из большого двухслойного горячего кольца 14, слои которого плотно прижаты друг к другу и выполнены из разных металлов M1 и М2, расположенного в зоне нагрева, и малого однослойного холодного кольца 15, выполненного из металла M1, расположенного в зоне охлаждения, слой горячего кольца 14, выполненный из металла M1, и холодное кольцо 15 ТЭП 13 соединены между собой радиальными перемычками 16, выполненными из металла M1 и ТЭП 17 меньшего диаметра, каждый из которых состоит из большого двухслойного горячего кольца 18, слои которого плотно прижаты друг к другу и выполнены из вышеупомянутых металлов M1 и М2, расположенного в зоне нагрева, и малого однослойного холодного кольца 19, выполненного из металла M1, расположенного в зоне охлаждения, слой горячего кольца 18, выполненный из металла M1, и холодное кольцо 19 ТЭП 17 соединены между собой радиальными перемычками 20, выполненными из металла M1, причем ТЭП 13 и ТЭП 17 установлены таким образом, что их горячие и холодные кольца 14, 15 и 18, 19 не касаются внутренней поверхности обечайки 12 и наружной поверхности трубы 8, горячие кольца 14 и 18 каждого ТЭП 13 и ТЭП 19 соединены с холодными кольцами 15 и 19 следующего ТЭП 13 или ТЭП 17 продольными перемычками 21, выполненными из металла М2, последние по счету ТЭП 13 или ТЭП 17 каждого ТЭЗ 5 соединены с первыми по счету ТЭП 13 или ТЭП 17 последующего ТЭЗ 5 электропроводкой (на фиг.1-6 не показана), свободные концы ТЭП 13 или ТЭП 17 крайних верхнего и крайнего нижнего ТЭЗ 5 соединены с токовыводами 22 и 23, а свободные торцы их труб теплоносителя 8 соединены с входным и выходным патрубками 24 и 25, соответственно.
основные узлы ТЭГ
узел ТЭГ
узел ТЭГ
Предлагаемый ТЭГ работает следующим образом
После заполнения труб теплоносителя 8 водой, создания в них ее циркуляции и начала горения топлива из камеры сгорания 4 ТЭГ дымовые газы поступают в межтрубное пространство короба 2 с начальной температурой tГН, двигаясь снизу вверх, омывают наружную поверхность ТЭЗ 5, отдавая им свое тепло, охлаждаются до заданной температуры tГК и выбрасываются из дымовой трубы 3 в атмосферу. При этом в результате теплообмена между дымовыми газами через поверхность ограждений ТЭЗ 5 и водой, движущейся через патрубок 24 сверху вниз, по трубам теплоносителя 8 ТЭЗ 5, соединенными последовательно калачами 6 и 7, вода нагревается от температуры tВН до температуры tВК и через патрубок 25 подается потребителю (на фиг.1-6 не показан). Одновременно в результате процесса конвективной теплопередачи от дымовых газов через стенку обечайки 12 нагревается зона нагрева, состоящая из слоя диэлектрического материала с высокой теплопроводностью 11, от которого основной поток тепла передается за счет теплопроводности большим двухслойным горячим кольцам 14 и 18 ТЭП 13 и ТЭП 17, двухслойная конструкция и ступенчатое расположение относительно друг друга которых позволяет увеличить количество воспринимаемого тепла за счет повышенной площади контакта колец 14 и 18 с зоной нагрева и высокой площади контакта слоев металлов M1 и М2, соединенных между собой и перемычками 21 (например, спайкой), которые нагреваются при этом. Кроме того, процесс теплообмена от материала 11 к кольцам 14 и 18 ТЭП 13 и ТЭП 17 интенсифицируется за счет передачи его теплопроводностью, скорость которой при высоком значении коэффициента теплопроводности значительно выше, чем скорость передачи тепла за счет конвекции [И.Н.Сушкин. Теплотехника. - М.: «Металлургия», 1973, с.195-198]. Так как кольцевой слой изоляционного материала 10 обладает малой теплопроводностью, то основной поток тепла от слоя материала 11 и горячих колец 14 и 18 передается за счет теплопроводности по радиальным перемычкам 16 и 20, выполненных из металла M1, количество которых определяется из условий передачи всего потока тепла из зоны нагрева к малым однослойным холодным кольцам 15 и 19 ТЭП 13 и ТЭП 17, расположенным в зоне охлаждения. Одновременно осуществляется охлаждение однослойных холодных колец 15 и 19 за счет передачи тепла теплопроводностью через слой материала 9, обладающего высокой теплопроводностью, к стенкам труб теплоносителя 8, откуда тепло передается конвекцией к циркулирующей воде. Нагрев двухслойных горячих колец 14 и 18 ТЭП 13 и ТЭП 17 ТЭЗ 5, состоящих из плотно соединенных между собой слоев металлов M1 и М2, расположенных в зоне нагрева - массиве нагреваемого горячего материала 11, и охлаждение однослойных холодных колец 15 и 19, выполненных из металла M1 и соединенных с горячими кольцами 14 и 18 радиальными перемычками 16 и 20, выполненными из металла M1, ТЭП 13 и ТЭП 17, расположенных в зоне охлаждения - массиве охлаждаемого холодного материала 9, соединенных между собой продольными перемычками 21, выполненными из металла М2, создает эмиссию электронов во всех ТЭП 13 и ТЭП 17 всех ТЭЗ 5 ТЭГ и, соответственно, возникновение в ТЭГ термоэлектричества [С.Г.Калашников. Электричество. - М.: «Наука», 1970, с.502-506], которое через тоководы 22 и 23 подается потребителю.
rnrnrnrnrnrnrnrnrn
Величина начальной температуры дымовых газов tГН определяется видом топлива и конструкцией камеры сгорания (топки), их конечная температура tГК - составом дымовых газов и требуемым температурным напором. Значения начальной и конечной температур нагреваемой воды tВН и tВК определяются технологическим регламентом и требованиями потребителя тепла.
Величина разности электрического потенциала на токовыводах 22 и 23 зависит от характеристик пары металлов M1 и М2, из которых изготовлены двухслойные кольца 14 и 18 и однослойные кольца 15 и 19, перемычки 16, 20, 21 каждого ТЭП 13 и 17, а также числа ТЭП 13 и ТЭП 17 в ТЭЗ 5 и числа рядов ТЭЗ 5 в отдельном ТЭГ. Требуемые напряжение U и силу тока I получают путем установки соответствующего числа ТЭЗ 5 в отдельно взятом ТЭГ и путем компоновки группы ТЭГ, соединенных последовательно и параллельно, комплект которых обеспечивает требуемую мощность.
Таким образом, конструкция предлагаемого ТЭГ позволяет повысить КПД теплогенератора путем одновременного получения тепловой и электрической энергии в одном аппарате, что повышает его надежность и эффективность.
Формула изобретения
Теплоэлектрический генератор, содержащий вертикальный корпус с отводящим газоходом, камеру сгорания, трубы теплоносителя, термоэмиссионные преобразователи, теплотоковыводы и узлы крепления термоэмиссонных преобразователей к трубам теплоносителя, отличающийся тем, что корпус состоит из прямоугольного короба, выполненного из диэлектрического материала с низкой теплопроводностью, внутри короба помещены ряды теплоэлектрических звеньев, торцы которых снаружи последовательно соединены между собой по горизонтали и вертикали калачами, причем каждое теплоэлектрическое звено представляет собой металлическую трубу теплоносителя, покрытую поочередно кольцевыми изоляционными слоями, каждый из которых выполнен из диэлектрического материала с высокой теплопроводностью, образуя зону охлаждения, диэлектрического материала с низкой теплопроводностью, образуя зону теплоизоляции, и диэлектрического материала с высокой теплопроводностью, образуя зону нагрева, соответственно последняя, в свою очередь, покрыта металлической обечайкой, при этом в массиве всех трех кольцевых изоляционных слоев вокруг металлической трубы теплоносителя по ее длине помещены по очередности термоэмиссионные преобразователи большего и меньшего диаметров, каждый из которых состоит из большого двухслойного горячего кольца, слои которого плотно прижаты друг к другу и выполнены из двух разных металлов M1 и М2, расположенного в зоне нагрева, и малого однослойного холодного кольца, выполненного из металла M1, расположенного в зоне охлаждения, слои двухслойных горячих колец термоэмиссионных преобразователей большего и меньшего диаметров, выполненные из металла M1, соединены с холодными однослойными кольцами упомянутых термоэмиссионных преобразователей радиальными перемычками, выполненными из металла M1, причем все термоэмиссионные преобразователи установлены таким образом, что их горячие и холодные кольца не касаются внутренней поверхности обечайки и наружной поверхности трубы теплоносителя, горячие кольца каждого термоэмиссионного преобразователя большего и меньшего диаметров соединены с холодными кольцами последующих термоэмиссионных преобразователей продольными перемычками, выполненными из металла М2, последние по счету термоэмиссионные преобразователи каждого теплоэлектрического звена соединены с первыми по счету термоэмиссионными преобразователями последующего теплоэлектрического звена электропроводкой, свободные концы термоэмиссионных преобразователей последнего верхнего и первого нижнего теплоэлектрических звеньев соединены с токовыводами, а свободные торцы их труб теплоносителя соединены с входным и выходным патрубками теплоносителя.
Имя изобретателя: Ежов Владимир Сергеевич Имя патентообладателя: Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" (КурскГТУ) Почтовый адрес для переписки: 305040, г.Курск, ул. 50 лет Октября, 94, Курский государственный технический университет (КурскГТУ), ОИС Дата начала отсчета действия патента: 08.02.2010
Разместил статью: admin
Дата публикации: 18-10-2013, 19:06
Использование: в термоэлектрических преобразователях энергии. Сущность изобретения: множество термоэлектрических полупроводников n- и р-типа регулярно расположены таким образом, что обе их торцевые грани образуют расположенные приблизительно на одном уровне торцевые поверхности межсоединения и соединены вместе через изоляцию .Электроды межсоединения для попеременного электрического соединения термоэлектрических полупроводников n- и р-типа образованы на обеих торцевых поверхностях межсоединения....
Использование: в энергетических установках с термоэмиссионным преобразованием тепловой энергии в электрическую. Сущность: генератор выполнен в виде кольцевого контейнера 1, заполненного материалом с капиллярной структурой - спеченным металлическим волокном. Контейнер 1 разделен на зоны 4, 5 и 6, соответственно испарительную, конденсационную и транспортную. Пористость зоны 5 больше пористости зон 4 и 5. В зоне 5 имеется канал 7 для прохода газовых примесей, одна сторона которого соединена с...
Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное энергией электромагнитных волн, которые также существуют изначально и материей, которая состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.
Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.
То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.
Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.
Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально?
Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.
От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.
Вначале было то, что существует изначально и никем не создавалось. А это
- безграничное пространство космоса
- безграничное время протекания множества процессов различной длительности
- электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя