Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Пьезоэлектрический генератор постоянного тока
Изобретения Российской Федерации » Электроэнергетика » Нетрадиционные источники энергии
Пьезоэлектрический генератор постоянного тока Ноу-хау разработки, а именно данное изобретение автора относится к преобразователям энергии, работающим на основе применения пьезокерамических материалов, и может быть использовано в любой области техники в качестве маломощного источника тока. Сущность: генератор содержит ротор, который приводится в движение от механической энергии, и статор, на котором закреплены один или несколько дисковых биморфных пьезоэлементов. С помощью закрепленных на роторе роликов осуществляется круговая деформация...
читать полностью


» Изобретения Российской Федерации » Электроэнергетика » Нетрадиционные источники энергии
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
+1
Добавить эту страницу в свои закладки на сайте »

Пьезоэлектрический генератор постоянного тока на основе эффекта Казимира


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2499350

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к преобразователям энергии, работающим на основе применения пьезокерамических материалов, и может быть использовано в любой области техники в качестве маломощного источника тока. Сущность: генератор содержит ротор с диском или барабаном, который приводится во вращательное движение, и статор, на котором закреплены пьезоэлементы. При вращении ротора с помощью металлических пластин закрепленных на диске или барабане и пьезоэлементах осуществляется периодическая деформация последних за счет эффекта Казимира. Вследствие прямого пьезоэффекта на электродах пьезоэлеменов генерируется переменное напряжение, которое затем может быть преобразовано в постоянное.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к электромеханическим преобразователям энергии, а именно к преобразователям, работающим на основе применения пьезоэлектрических материалов.

Изобретение может быть использовано в качестве маломощного источника постоянного тока в устройствах с любым приводом, обеспечивающим вращение ротора, и найти применение в быту и промышленности.

В настоящее время в мире существует множество предложений, патентов и действующих моделей устройств, преобразующих энергию разнообразных механических деформаций, сопутствующих работе машин, механизмов или движений человека в электрическую посредством пьезоэлементов (например, Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C., "Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices", Proccedings of the IEEE, On page(s): 1457-1486, Volume: 96 Issue: 9, Sept. 2008, патенты США US 6767161 B1, US 4739179 A). Все системы подобного типа являются открытыми, поскольку источники механических деформаций являются внешними по отношению к пьезоэлементам и связанным с ними электротехническими схемами. Поэтому в таких устройствах в принципе возможна генерация полезной электроэнергии, превышающей затраты энергии необходимой для обеспечения работы самого устройства.

Общим недостатком всех подобных устройств является потребность в более-менее постоянном источнике сопутствующих механических деформаций для обеспечения постоянства напряжения или тока на выходе пьезоэлементов. Это требование выполнить довольно сложно ввиду нерегулярности, присущей многим подобным источникам деформации. Примером могут служить деформации дорожного полотна, вызываемые движением человека или транспорта. В этом случае для обеспечения постоянства электрических характеристик на выходе пьезоэлементов нужно покрывать ими значительные площади, что связано с большими затратами и сложностью эксплуатации. К тому же такой подход не решает проблему, например в ночное время. В ряде коммерческих устройств, преобразующих сопутствующие механические деформации в электроэнергию посредством пьезоэффекта, последняя используется для зарядки конденсатора большой емкости (например, продукция «Linear Technology»: www.linear.com/products/energyjharvesting). Разряжаясь, конденсатор обеспечивает на выходе почти постоянный ток, даже если деформации на входе системы кратковременно отсутствуют. Однако именно из-за желания поддерживать постоянство тока, его величина, а значит, и выходная мощность подобных преобразователей оказывается очень малой и пригодной для питания весьма ограниченного круга устройств.

Другой класс устройств, преобразующих механическую энергию в электрическую, включает в себя сам источник деформаций пьезоэлементов. Например, устройство согласно патенту RU 2113757, в котором деформация биморфного пьезоэлемента осуществляется при качении роликов по его поверхности. Такие устройства обеспечивают постоянство электрических параметров на выходе.

rnrnrnrnrnrnrnrnrn

Недостаток этого класса устройств состоит в том, что они являются системами замкнутого типа. А значит, в них возможно лишь преобразование энергии из одного вида в другой. Коэффициент такого преобразования энергии всегда меньше единицы.

Все перечисленные недостатки отсутствуют в заявленном устройстве пьезоэлектрического генератора постоянного тока на основе эффекта Казимира, в котором периодические деформации пьезоэлементов вызываются механической силой (притяжения) возникающей между металлическими пластинами на поверхности стационарных пьезоэлементов и вращающегося диска или барабана при их перекрытии. Величина этой силы обратно пропорциональна четвертой степени расстояния между пластинами и пропорциональна их площади. Эксперименты последних лет подтверждают эту зависимость с точностью 10-15%.

Источником механической силы является поляризация вакуума квантовых полей вследствие изменения спектра вакуумных колебаний при изменении расстояния между пластинами. Это и есть эффект Казимира.

Уникальной особенностью эффекта Казимира является отсутствие составляющей силы, направленной параллельно поверхности притягивающихся пластин, т.е., сила Казимира не тормозит вращение диска или барабана и, значит, не требуется дополнительная мощность на ее преодоление.

Эти обстоятельства весьма существенны для обеспечения генерации полезной электроэнергии, поскольку при постоянстве мощности, необходимой для вращения диска или барабана, генерируемое пьезоэлементами напряжение зависит только от их пьезоэлектрических характеристик, площади и расстояния между металлическими пластинами. Т.е., выходные электрические параметры устройства связаны с его геометрическими параметрами, но не с потребляемой мощностью.

Предлагаемое устройство является открытой системой, в которой возможно извлечение энергии, поскольку физический вакуум, как наинизшее состояние квантовых полей, присутствует везде и всегда, являясь неограниченным источником деформаций указанного типа. Таким образом, устройство обеспечивает непрерывную выработку электроэнергии, а его эффективность определяется соотношением между потребляемой мощностью, параметрами пьезоэлементов, расстоянием между металлическими пластинами и их размерами. Источником механических деформаций пьезоэлементов является эффект Казимира.

Сущность изобретения поясняется чертежами, на которых изображено:

На фиг.1 - общая компоновка генератора. Подшипниковые узлы, муфта и откачиваемый объем показаны условно. Выводы электродов пьезоэлементов на чертеже не показаны.

На фиг.2 - пример расположения металлических слоев (пластин) размером 10×10 мм2 на диске.

На фиг.3 - общая схема выстраивания поверхностей пьезоэлементов в одной плоскости.

rnrnrnrnrnrnrnrnrn

На фиг.4 - Пьезоэлектрический генератор постоянного тока на основе эффекта Казимира с узлом барабанного типа.

На фиг.5 - параметры некоторых видов промышленных пьезоэлектрических материалов с наибольшей чувствительностью и соответствующие значения напряжения, которое можно получить на их электродах.

Заметим, что чертежи и схемы не охватывают все возможные технические решения данного устройства, а являются лишь иллюстрирующими материалами частного случая.

общая компоновка генератора. Подшипниковые узлы, муфта и откачиваемый объем показаны условно. Выводы электродов пьезоэлементов на чертеже не показаныобщая компоновка генератора. Подшипниковые узлы, муфта и откачиваемый объем показаны условно. Выводы электродов пьезоэлементов на чертеже не показаны

Устройство на фиг.1 представляет собой диск 3, жестко посаженный на ведущий вал 1, концы которого фиксированы в подшипниковых узлах 2 статора. Статор 9 состоит из двух пластин с пьезоэлементами 4 на внутренних поверхностях, обращенных к диску. Диск должен иметь высокую чистоту поверхности и однородность по толщине. Можно использовать диски, аналогичные тем, что применяются для производства жестких дисков компьютеров. Такие диски выполняются на стеклянной или керамической основе и отличаются очень высокой чистотой поверхности, отсутствием волнистости, постоянством толщины и сбалансированностью. На обе стороны диска наносится симметричный «рисунок» из металлических слоев (пластин) 7 толщиной 2-3 мкм (фиг.2), поверхность которых также должна иметь высокую чистоту. Крайне незначительная масса и симметричное расположение слоев не влияют на инерционные и динамические характеристики диска. Аналогичное металлическое покрытие 6 наносится на поверхности пьезоэлементов статора, обращенные к диску. Их роль могут выполнять и штатные электроды пьезоэлементов после необходимой обработки, или подложки 5, жестко прикрепленные к поверхности пьезоэлементов.

пример расположения металлических слоев (пластин) размером 10×10 мм2 на дискепример расположения металлических слоев (пластин) размером 10×10 мм2 на диске

В процессе работы металлические слои на поверхности пьезоэлементов и диска должны находиться на расстоянии не более 0.5 мкм, но не касаться друг друга. Столь малый зазор можно обеспечить при сборке устройства за счет теплового расширения ведущего вала и материалов, находящихся между диском и статором. Статор и диск жестко фиксируются на валу в положении полного прилегания поверхностей при пониженной (или повышенной) температуре. Затем вся сборка доводится до нормальной температуры, помещается в герметичный термоизолированный объем и откачивается. За счет теплового удлинения (сокращения) вала и других материалов между диском и статором появляется необходимые зазоры. Величину их можно контролировать подбором материала отдельных деталей устройства, их продольными (вдоль оси вала) размерами, а также температурой, при которой производится сборка. Направляющие стержни 8, выполняемые из той же партии материала, что и вал, также жестко фиксируются в статоре при холодной или теплой сборке с целью сохранения постоянства зазора по всему радиусу диска.

общая схема выстраивания поверхностей пьезоэлементов в одной плоскости.общая схема выстраивания поверхностей пьезоэлементов в одной плоскости.

Тип подшипников и способ их крепления определяются необходимостью работы в вакууме и компенсацией осевых смещений вала за счет осевой игры подшипников и перекоса их внутреннего и внешнего колец.

Один конец вала соединяется через муфту 13 со шпинделем электромотора 14 или другого устройства, обеспечивающего вращение. Тип муфты должен допускать ее эксплуатацию в вакууме, обеспечивать высокий КПД передачи вращательного момента валу устройства, а также нормальную работу устройства при возможных перекосах или несоосности вала и шпинделя.

Диск, вал и статор образуют единый жесткий узел с целью обеспечения постоянства зазора между металлическими пластинами, т.е., предотвращения перекоса и осевых перемещений вала внутри узла. Поэтому, узел не имеют жесткой продольной связи с корпусом устройства. Направляющие стержни имеют скользящую посадку в крепежной пластине 12 и позволяют всему узлу перемещаться как целое, например при осевых смещениях вала электромотора.

Пьезоэлектрический генератор постоянного тока на основе эффекта Казимира с узлом барабанного типаПьезоэлектрический генератор постоянного тока на основе эффекта Казимира с узлом барабанного типа

На фиг.1 также условно изображен ряд крепежных элементов, необходимых для функционирования устройства: 10 - термоизолирующая вставка, 11 - упругая прокладка или пружина, 15 - герметичный корпус, 16 - крепеж электромотора, 17 - втулка.

Коммерческие пьезоэлементы имеют разброс по толщине, превышающий необходимую точность, для обеспечения одинакового зазора между диском и поверхностью всех пьезоэлементов. Выравнивание общей рабочей плоскости пьезоэлементов можно провести, например, за счет толщины клеевого слоя между каждым пьезоэлементом и пластинами статора 9. Согласно рекомендациям производителей пьезокерамики, толщина клеевого слоя может достигать 50 мкм. Этого более чем достаточно для выравнивания рабочих торцов пьезоэлементов в одной плоскости. Возможная процедура выравнивания схематически изображена на фиг 3. Здесь, 4 - пьезоэлементы, 5 - подложки, 6 - металлическое покрытие, 9 - пластина статора, 18 - плоская базовая поверхность (например, накопитель от жесткого диска), 19 - кольцевой груз, 20 - клеевые слои.

Перед выравниванием каждый пьезоэлемент калибруется - измеряется уровень выходного напряжения при одинаковой статической нагрузке. При правильном выравнивании все пьезоэлементы должны показывать одинаковый уровень сигнала с учетом индивидуального калибровочного напряжения. Клеевое соединение должно иметь жесткость существенно выше жесткости пьезоэлемента и давать малую усадку.

rnrnrnrnrnrnrnrnrn

Предлагаемое устройство допускает масштабирование как в радиальном направлении (увеличение радиуса диска и количества пьезоэлементов), так и в продольном (увеличение числа дисков на валу и элементов статора с пьезоэлементами). Пропорционально увеличивается суммарное выходное напряжение всего устройства. Но при этом необходимо соблюдать положительный баланс с мощностью, потребляемой электромотором.

Отдельные пьезоэлементы можно объединять в группы, прикрепленные к единой металлической пластине. В предельном случае, все пьезоэлементы можно прикрепить к одной ровной поверхности, аналогичной поверхности вращающегося диска, на которую нанесены металлические слои. Такая компоновка может значительно упростить сборку и наладку устройства, однако, механическая жесткость системы пьезоэлементов возрастает. Поэтому объединение пьезоэлементов в группы следует сопровождать уменьшением их площади, а необходимую толщину набирать из отдельных пьезоэлементов меньшей толщины. При этом жесткость клеевого слоя должна быть существенно выше жесткости отдельных пьезоэлектрических слоев.

Основной узел генератора может быть выполнен в виде двух соосных барабанов (фиг.4). В такой конструкции металлические полоски наносятся на внешнюю поверхность барабана 21 и обращенные к ней торцы пьезоэлементов 22, которые закреплены на внутренней поверхности статора 23. Вместо отдельных пьезоэлементов, может использоваться один трубчатый элемент с радиальной модой деформации. Установка необходимого зазора также достигается за счет теплового расширения в радиальном направлении.

Поскольку предлагаемый пьезоэлектрический генератор является многоэлементным, в нем могут быть получены различные уровни напряжений путем соединения электродов пьезоэлементов в электрическую цепь последовательно или параллельно, либо использовать различные схемы суммирования напряжения или тока.

При работе устройства не происходит износа пьезоэлементов, поскольку отсутствует непосредственный механический контакт между ними и объектом, вызывающим их деформацию.

Пьезоэлектрический генератор постоянного тока на основе эффекта казимира работает следующим образом

При вращении диска 3 металлические пластины 7 на его поверхности периодически перекрывают аналогичные пластины 6 на подложках 5, прикрепленные к пьезоэлементам 4 статора 9. В области перекрытия пластин действует сила Казимира, вызывающая растяжение пьезоэлементов. Вследствие прямого пьезоэффекта, на их электродах генерируется разность потенциалов.

Поскольку сила Казимира пропорциональна площади перекрытия пластин, то напряжение на электродах пьезоэлементов имеет форму, близкую к пилообразной, если размеры пластин невелики или их форма не слишком отличается от кольцевого сектора.

параметры некоторых видов промышленных пьезоэлектрических материалов с наибольшей чувствительностью и соответствующие значения напряжения, которое можно получить на их электродах.параметры некоторых видов промышленных пьезоэлектрических материалов с наибольшей чувствительностью и соответствующие значения напряжения, которое можно получить на их электродах.

В таблице на фиг.5 приведены параметры некоторых видов промышленных пьезоэлектрических материалов с наибольшей чувствительностью. В последних двух колонках приведены расчетные величины максимального напряжения на электродах каждого пьезоэлемента для расстояний между металлическими пластинами диска и статора равным 0.5 и 0.25 мкм при их полном перекрытии. Площади пластин и электродов полагаются равными. При расчетах генерируемого напряжения были учтены поправки к силе Казимира за счет неидеальности материала пластин (толщина скин-слоя), температурная поправка и шероховатость поверхности пластин. Краткая сводка расчетных формул приведена в приложении 1.

Чтобы увеличить напряжение, генерируемое пьезокерамическими элементами, можно уменьшить их электрическую емкость, т.е., увеличить толщину и уменьшить площадь. Например, для изображенных на фиг.1 коммерческих пьезокерамических элементов стандартных размеров с площадью электродов 0.26×0.26 см2, толщиной 5 мм и площадью металлических пластин 1×1 см2, значения генерируемого напряжения в последних двух колонках таблицы на фиг.5 будет примерно в 16 выше. Применение пьезоэлементов толщиной 10 мм повысит напряжение еще вдвое. Таким образом, генерируемое напряжение можно увеличить примерно в 30 раз, вплоть до 0.9-1.3 мВ для распространенных видов пьезокерамики ЦТС и PZT. Кроме того, применение пористых пьезокерамик также приводит к увеличению выходного напряжения (если возможна их эксплуатации в вакууме).

Из таблицы на фиг.5 следует, что электроактивные диэлектрики являются наиболее эффективными материалами для рассматриваемого устройства ввиду значительного генерируемого напряжения. Однако некоторые из них имеют пористую структуру, что требует дополнительных конструктивных мер для их эксплуатации в вакууме, чтобы избежать искажения рабочих поверхности из-за вздутий и ухудшения вакуума при дегазации и испарении компонентов материала диэлектриков. Некоторые виды пьезополимеров выпускаются в виде пленок толщиной до 1 мм. В этом случае необходимую толщину можно набрать склеивая отдельные слои.

Откачка рабочего объема до глубокого вакуума, как это делается в прецизионных экспериментах, не представляется необходимой. В точных экспериментах глубокий вакуум нужен в основном для предотвращения влияния внешних акустических возмущений, тепловых потоков и окисления рабочих поверхностей исследуемых материалов (если они ему подвержены). В рассматриваемом устройстве для пластин предполагается применение неоксидируемых металлов. Роль акустических вибраций неважна, если она не приводит к непосредственному касанию пластин.

На фиг.1 для примера изображен электромотор с геометрическими размерами, соответствующими низкошумящему RF-300CA. Подобные электромоторы широко применяются в бытовой технике и отличаются малым энергопотреблением (124 мВт при напряжении питания 2 В и 1820 об/мин). Электромотор может размещаться как внутри вакуумированного объема, так и снаружи.

Общей проблемой всех низкочастотных пьезоэлектрических устройств является их высокий выходной импеданс из-за малой электрической емкости, что делает невозможным их непосредственное подключение к внешней нагрузке. Для решения этой проблемы можно использовать, например выходной контур на основе операционного усилителя (ОУ), включенного по неинвертирующей схеме преобразования напряжения в ток. В этом случае ток на выходе ОУ пропорционален напряжению на его входе. Для снижения общей потребляемой устройством мощности, ОУ должен иметь низкое напряжение питания и очень малый ток потребления. Наиболее подходящими являются ОУ с функцией «rail-to-rail» на выходе, напряжением питания не более 3 В и током потребления менее 1 мА. К таким ОУ относится, например, семейство широкополосных TLV2785x (1.8-3.6 В, 820 мкА). Данный ОУ способен принимать входные сигналы с малыми токами порядка 2.5 пА и выдавать ток до 10 мА, при напряжении примерно равном напряжению питания. Подобные ОУ производятся рядом компаний и вполне пригодны для обеспечения работы устройства.

Преобразование пилообразного напряжения на выходе пьезоэлемента может быть легко преобразовано в квазипостоянное, например, включением подходящего по емкости конденсатора параллельно входу ОУ.

Поскольку ток на выходе мало- и микромощных ОУ обычно ограничен величинами 10, 20 или 25 мА, а максимальное напряжение равно напряжению питания, то при использовании пьезоэлементов, способных генерировать значительную разность потенциалов, разумно применять делители напряжения, подключенные ко входам отдельных ОУ. Так можно получить значительно больший суммарный ток в выходной цепи при напряжении питания ОУ. Если необходимо большее напряжение, можно использовать стандартные схемы инвертирующих или неинвертирующих сумматоров.

Выходную мощность пьезоэлементов можно использовать для зарядки аккумуляторов 1.2-1.5 В, ионисторов (суперконденсаторов), либо для иных целей после суммирования напряжений или токов отдельных пьезоэлементов.

Формула изобретения

Пьезоэлектрический генератор постоянного тока, содержащий статор, на котором закреплены пьезоэлементы с металлическими пластинами, и ротор, выполненный в виде вала, на котором закреплен диск или барабан с ответными металлическими пластинами, характеризующийся тем, что в нем механические деформации пьезоэлементов статора вызываются эффектом Казимира при перекрытии металлических пластин статора и диска или барабана при вращении последних, что приводит к генерации электрического напряжения на электродах пьезоэлементов вследствие прямого пьезоэффекта.

Имя изобретателя: Ской Вадим Рудольфович
Имя патентообладателя: Ской Вадим Рудольфович
Почтовый адрес для переписки: 141986, Московская обл., г. Дубна, пр. Боголюбова, 16, кв.37, В.Р. Ской
Дата начала отсчета действия патента: 19.03.2012

Разместил статью: admin
Дата публикации:  22-11-2013, 18:50

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Способ использования теплоаккумуляционных свойств грунта
Изобретение относится к области строительства и может быть использовано для энергетически и экологически эффективного теплохладоснабжения зданий и сооружений различного назначения. Способ использования теплоаккумуляционных свойств грунта включает устройство в грунте герметичных теплообменников, организацию циркуляции по ним теплоносителя и извлечение из грунта или/и сброс в грунт низкопотенциальной тепловой энергии. При этом за счет температурного режима теплоносителя обеспечено вовлечение в...

Устройство отбора статического электричества
Устройство отбора статического электричества относится к области электроэнергетики, в частности к альтернативным источникам электроэнергии. Сущность изобретения состоит в использовании неравномерности распределения заряда кучево-дождевого облака в горизонтальной плоскости в нижних его слоях. Устройство состоит из двух лазерных установок, за основу которых взят лазер с инфракрасным спектром излучения, создающий оптический пробой воздуха с созданием ионизированного токопроводящего канала. Лазеры...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: (3+3)/2=?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Биоэлектрохимический реактор

Биоэлектрохимический реактор Изобретение относится к области техники получения электричества в процессе биологической очистки сточных вод, в частности к биоэлектрохимическому…
читать статью
Нетрадиционные источники энергии
Энергоустановка для преобразования энергии течения воздушных или водных потоков

Энергоустановка для преобразования энергии течения воздушных или водных потоков Ноу-хау разработки, а именно данное изобретение автора относится к области энергетики и может быть использовано в ветроэнергетических или в…
читать статью
Альтернативные источники энергии, Ветроэлектростанции, Нетрадиционные источники энергии
Статический генератор электроэнергии

Статический генератор электроэнергии Изобретение относится к электротехнике и может быть использовано для получения электроэнергии. Статический генератор электрической энергии включает…
читать статью
Нетрадиционные источники энергии
Устройство для получения энергии из электрического поля атмосферы

Устройство для получения энергии из электрического поля атмосферы Ноу-хау разработки, а именно данное изобретение автора относится к электротехнике и предназначено для бесперебойного обеспечения энергией автономного…
читать статью
Нетрадиционные источники энергии
Механическая собирающая электрическую энергию зубная щетка

Механическая собирающая электрическую энергию зубная щетка Заявлена механическая собирающая энергию зубная щетка, которая может использовать схемы и устройства для преобразования механической энергии в…
читать статью
Удовлетворение потребностей человека, Нетрадиционные источники энергии
Эффективное и экологически безопасное устройство для генерации электрической энергии

Эффективное и экологически безопасное устройство для генерации электрической энергии Изобретение относится к электротехнике, к системам генерации энергии. Технический результат состоит в повышении эффективности и экологической…
читать статью
Нетрадиционные источники энергии
Сироты способ осуществления взрывной реакции, в том числе ядерной или термоядерной

Сироты способ осуществления взрывной реакции, в том числе ядерной или термоядерной Заявленное изобретение относится к способу осуществления взрывной реакции, в том числе ядерной или термоядерной. В заявленном способе взрывная…
читать статью
Нетрадиционные источники энергии
Электроискровой генератор энергии

Электроискровой генератор энергии Изобретение относится к энергетическим установкам, предназначенным для получения электрической энергии из газового электрического разряда.…
читать статью
Нетрадиционные источники энергии
Гравитационный аккумулятор

Гравитационный аккумулятор Аккумулятор предназначен для использования в качестве вторичного источника энергоснабжения, например в агрегате с генерирующими установками,…
читать статью
Нетрадиционные источники энергии
Электростатический генератор

Электростатический генератор Назначение устройства: в электростатических ускорителях. Сущность изобретения: электростатический генератор, содержащий транспортер электрических…
читать статью
Нетрадиционные источники энергии
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
pi31453_53
Публикаций: 9
Комментариев: 0
Romm
Публикаций: 0
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Parkerbig
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
Mavavto
Публикаций: 0
Комментариев: 0
AllenCeash
Публикаций: 0
Комментариев: 0
kapriolree
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru