Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Солнечная многофункциональная сильноконцентрирующая энергоустановка
Изобретения Российской Федерации » Электроэнергетика » Альтернативные источники энергии » Солнечная энергетика
Солнечная многофункциональная сильноконцентрирующая энергоустановка Изобретение относится к гелиоэнергетике, к высокоэффективным солнечным сильноконцентрирующим энергоустановкам. Технический результат состоит в преобразовании солнечной энергии при более низкой температуре приемника не только в электрическую, но и механическую энергию, энергию монохроматического излучения, а также в электромагнитную энергию радиопередатчика при радиосвязи. Солнечная энергоустановка содержит первичный и вторичный концентраторы, приемник, расположенный в вершине первичного...
читать полностью


» Изобретения Российской Федерации » Электроэнергетика » Альтернативные источники энергии » Солнечная энергетика
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
0
Добавить эту страницу в свои закладки на сайте »

Фотоэлектрический концентраторный субмодуль


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2496181

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к области солнечной энергетики и, в частности к концентраторам солнечного излучения, используемым в фотоэлектрических модулях, применяемым, например, в наземных гелиоэнергетических установках, предназначенных для систем автономного энергоснабжения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Одним из наиболее перспективных методов получения электроэнергии из возобновляемых источников является фотоэлектрическое преобразование концентрированного солнечного излучения с использованием дорогостоящих высокоэффективных многокаскадных солнечных элементов. Известно, что применение оптических концентраторов излучения в фотоэлектрических модулях позволяет увеличить энергетическую эффективность фотоэлектрических модулей, а также улучшить их энерго-экономические показатели за счет многократного уменьшения расхода дорогостоящих полупроводниковых материалов. Так, при увеличении степени концентрирования солнечного излучения на поверхности солнечного элемента до 1000х , площадь дорогих солнечных элементов сокращается в 1000 раз. Но от вклада стоимости оптических концентрирующих систем в общую стоимость модуля, степени сложности их изготовления и сборки модуля, величины срока эксплуатации зависит экономичность фотоэлектрического модуля.

Известен фотоэлектрический субмодуль (см. заявка РСТ WO 9213362, H01L 31/00, опубликована 06.08.1992), содержащий корпус, смонтированный в корпусе концентратор и фотоэлемент (ФЭ), расположенный на задней стенке корпуса. В качестве концентратора может быть использована линза Френеля, а корпус может иметь вид усеченного конуса, либо усеченной пирамиды.

Основным недостатком рассматриваемого фотоэлектрического субмодуля с концентратором является сложность изготовления и высокая стоимость конструкции.

Известен фотоэлектрический субмодуль (см. патент US 6717045, МПК H01L 31/052, опубликован 06.04.2004), состоящий из первичного концентратора, имеющего степень концентрации солнечного излучения 5-10 крат, вторичного концентратора, расположенного ниже первого и увеличивающего степень концентрации солнечного излучения в 20-50 раз, и третьего концентратора, установленного в нижней плоскости вторичного концентратора и фокусирующего излучение на поверхность солнечного фотоэлемента. В качестве первичного концентратора может быть использована линза Френеля. Вторичный концентратор представляет собой комбинированный параболический отражатель, изготовленный из стекла или керамики и имеющий отражающие и защитные покрытия. В качестве третьего концентратора служит стеклянная линза. Солнечный фотоэлемент установлен на площадке, имеющей оребрение для рассеяния тепла.

Недостатками известной конструкции фотоэлектрического субмодуля являются большие потери света за счет отражения от поверхностей оптических элементов трехкаскадного концентратора, технические сложности изготовления, монтажа и юстировки большого количества оптических деталей и, соответственно, также высокая стоимость конструкции.

rnrnrnrnrnrnrnrnrn

Известен концентраторный солнечный фотоэлектрический субмодуль (см. заявка US 2007/0089778, МПК H02N 6/00, опубликована 26.04.2007), содержащий фронтальную панель с установленным на ее тыльной стороне пары коаксиальных осесимметричных криволинейных зеркал, фокусирующих солнечное излучение на фотоэлемент, установленный на тыльной панели.

К недостатку известного субмодуля следует отнести сложность изготовления двух отражательных оптических элементов с необходимой точностью профиля.

Известен концентраторный солнечный фотоэлектрический субмодуль (см. патент US7851693, МПК H02L 31/042, опубликован 14.12.2010), имеющий твердотельный прозрачный оптический концентратор, типа Кассегрейн, содержащий относительно большую вогнутую отражающую поверхность и расположенную против нее относительно малую выпуклую отражающую поверхность, фокусирующие и направляющие солнечное излучение на поверхность солнечного элемента, установленного на теплоотводе в центральной части вогнутой отражающей поверхности.

Недостаток известного субмодуля заключается в сложности изготовления оптических элементов сложной конфигурации и высокой стоимости конструкции.

Известен фотоэлектрический субмодуль (см. патент RU 2307294, МПК H01L 31/052, опубликован 27.09.2007), содержащий фронтальную панель из силикатного стекла с линзой Френеля на ее тыльной стороне, а также солнечный фотоэлемент с теплоотводящим основанием. Теплоотводящие основания расположены на тыльной панели из силикатного стекла или выполнено в виде лотка с плоским дном, через центральную продольную линию поверхности которой проходит оптическая ось линзы Френеля. Введена дополнительная промежуточная панель из силикатного стекла, на фронтальной или тыльной стороне которой установлена плоско-выпуклая линза, соосная с линзой Френеля. Светоприемная поверхность фотоэлемента находится в фокусном пятне двух концентраторов - линзы Френеля и плоско-выпуклой линзы. В зависимости от варианта выполнения субмодуля расстояние между промежуточной панелью и теплоотводящими основаниями, фокусное расстояние плоско-выпуклой линзы, толщина фотоэлемента, промежуточной панели и плоско-выпуклой линзы связаны соотношениями, приведенными в формуле изобретения.

Известный фотоэлектрический субмодуль обеспечивает улучшение разориентационных характеристик устройства. Однако недостатком известного субмодуля является высокий уровень концентрации солнечного излучения на фотоэлементе, что приводит к снижению эффективности преобразования света в электроэнергию и уменьшает срок службы фотоэлемента. Недостатком известного фотоэлектрического субмодуля является также трудоемкость позиционирования ФЭ и линзы в линзовой панели, а также дополнительные оптические потери при прохождении света через промежуточную линзовую панель.

Известен фотоэлектрический концентраторный субмодуль (см. патент RU 2352023, МПК H01L 31/052, опубликован 10.04.2009), совпадающий с заявляемым техническим решением по наибольшему числу существенных признаков и принятый за прототип.

Фотоэлектрический концентраторный субмодуль содержит фронтальную панель и тыльную панели, изготовленные из силикатного стекла, первичный и вторичный оптические концентраторы и фотоэлемент с теплоотводящим основанием. Первичный оптический концентратор выполнен в форме линзы, сформированной в виде тыльной поверхности фронтальной панели методом литья под давлением. Вторичный оптический концентратор выполнен в виде фокона, установленного меньшим основанием на светочувствительной поверхности фотоэлемента. Фотоэлемент с теплоотводящим основанием размещены на фронтальной поверхности тыльной панели соосно первичному оптическому концентратору. Вторичный оптический концентратор позволяет улучшить разориентационную характеристику солнечного фотоэлектрического субмодуля, что обеспечивает увеличение энергопроизводительности фотоэлектрического модуля.

Недостатками известного фотоэлектрического концентраторного субмодуля-прототипа являются сложность изготовления и монтажа вторичного оптического концентратора на светочувствительной поверхности фотоэлемента, а также трудоемкость позиционирования ФЭ и высокая статистическая вероятность линейного несовпадения центра ФЭ с оптическим центром линзы.

Задачей, решаемой заявляемым техническим решением, является уменьшение трудоемкости изготовления фотоэлектрического субмодуля при обеспечении высокой точности монтажа фотоэлемента и сохранении хорошей разориентационной характеристики, что позволит увеличить его энергопроизводительность и надежность. Снижение расхода материалов за счет уменьшения в 2 раза толщины субмодулей также позволит уменьшить стоимость изготовления фотоэлектрического модуля.

rnrnrnrnrnrnrnrnrn

Поставленная задача решается тем, что фотоэлектрический концентраторный субмодуль включает фронтальный стеклянный лист, на тыльной стороне которого расположен первичный оптический концентратор в виде линзы квадратной формы с длиной стороны квадрата, равной W, и фокусным расстоянием F. В центральной области поверхности линзы квадратной формы и соосно с ней установлен фотоэлемент толщиной z1, выполненный в виде квадрата со стороной, равной d1, размещенный на теплоотводящем основании, выполненном в виде круга диаметром d2 или прямоугольника с длиной большей стороны d2 и толщиной z2. На фотоактивной поверхности фотоэлемента соосно с линзой квадратной формы установлен вторичный оптический концентратор высотой h1. Параллельно фронтальному стеклянному листу установлен тыльный стеклянный лист со светоотражающим зеркальным покрытием, расстояние от которого до фотоэлемента равно L. Величины F, W, d1, d2, z1, z2 , h1 и L удовлетворяют соотношениям;

где n1 - показатель преломления материала вторичного оптического концентратора.

Новым в настоящем фотоэлектрическом концентраторном субмодуле является установка в центральной области поверхности линзы квадратной формы и соосно с ней фотоэлемента толщиной z1, выполненного в виде квадрата со стороной, равной d1, размещенного на теплоотводящем основании, выполненном в виде круга диаметром d2 или прямоугольника с длиной большей стороны d 2 и толщиной z2, установка параллельно фронтальному стеклянному листу тыльного стеклянного листа со светоотражающим зеркальным покрытием, расстояние от которого до фотоэлемента равно L, и нахождение соотношения величин F, W, d1 , d2, z1, z2, h1 и L.

Установка фотоэлемента в центральной области поверхности линзы квадратной формы и соосно с ней на тыльной стороне фронтального стеклянного листа увеличивает точность монтажа элементов и позволяет получить законченную сборочную единицу при изготовлении фотоэлектрических модулей. Установка параллельно фронтальному стеклянному листу тыльного стеклянного листа со светоотражающим зеркальным покрытием, расстояние от которого до фотоэлемента равно L, позволяет фокусировать солнечное излучение на фотоприемной поверхности фотоэлемента и исключает ошибку позиционирования, возникающую при установке линз первичного оптического концентратора и фотоэлементов на разных поверхностях. Кроме того, установка параллельно фронтальному стеклянному листу тыльного стеклянного листа со светоотражающим зеркальным покрытием позволяет в 2 раза уменьшить толщины субмодулей, что приводит к снижению расхода материалов и уменьшению стоимости изготовления фотоэлектрического модуля.

Первичный оптический концентратор может быть выполнен в виде линзы Френеля или в виде плоско-выпуклой линзы.

Теплоотводящее основание может быть выполнено в виде байпасного диода, изготовленного из кремниевой пластины с p-n переходом, полярность которого противоположна полярности p-n перехода фотоэлемента, или может быть выполнено из меди.

Светоотражающее зеркальное покрытие может быть расположено на фронтальной стороне тыльного стеклянного листа. При этом светоотражающее зеркальное покрытие может быть выполнено в виде круга диаметром D1, соосного с линзой первичного оптического концентратора, диаметр круга D1 удовлетворяет соотношению:

Светоотражающее зеркальное покрытие может быть также установлено на тыльной стороне тыльного стеклянного листа и покрыто защитным материалом, устойчивым к воздействию окружающей среды. В этом случае светоотражающее зеркальное покрытие может быть выполнено в виде круга диаметром D2, соосного с линзой первичного оптического концентратора, при этом диаметр круга D2 удовлетворяет соотношению:

где n2 - показатель преломления тыльного стеклянного листа,

h2 - толщина тыльного стеклянного листа, см.

Вторичный оптический концентратор может быть выполнен в виде усеченного стеклянного конуса, обращенного меньшим основанием к фотоэлементу, с диаметром меньшего основания, равным или меньшим d1, или в виде стеклянного цилиндра с диаметром основания, равным или меньшим d1, или в виде усеченной стеклянной пирамиды с квадратными основаниями, обращенной меньшим основанием к фотоэлементу, с длиной стороны меньшего основания, равной или меньшей d1 , или в виде стеклянной пластины с квадратными основаниями и длиной стороны квадрата, равной или меньшей d1, или в виде короткофокусной плосковыпуклой линзы. Диаметры оснований стеклянного цилиндра или усеченного стеклянного конуса, а также длины сторон оснований усеченной стеклянной пирамиды или стеклянной пластины с квадратными основаниями обращенные к фотоэлементу, выбираются равными d1, если размер фотоактивной поверхности фотоэлемента совпадает с размероми фотоэлемента. В случае, когда фотоактивная поверхность фотоэлемента меньше размеров фотоэлемента, то соответствующие размеры оснований вторичных оптических концентраторов, обращенные к фотоэлементу, выбираются равными размеру фотоактивной поверхности фотоэлемента.

Выбор оптимального диапазона размеров первичного оптического концентратора в виде линзы, заданного соотношением 0,5F<W<F, определяется необходимостью получения максимальной энергетической кратности концентрирования солнечного излучения на поверхности фотоэлемента. Для этого отношение площади линзы к площади светового пятна на поверхности фотоэлемента должно быть как можно больше при сохранении высокого оптического кпд линзы. Известно, что диаметр сфокусированного линзой светового пятна строго детерминирован, определяясь угловым размером солнечного диска и фокусным расстоянием линзы, и равен 0.01F. При увеличении размеров линзы W больше F уменьшается ее оптический кпд, поскольку в этом случае периферийные области работают при больших углах преломления, что увеличивает отражение лучей от преломляющей поверхности линзы вплоть до достижения условия полного внутреннего отражения. Однако для размеров линзы W, меньших, чем 0,5F, кратность концентрирования солнечного излучения уже значительно уменьшается.

rnrnrnrnrnrnrnrnrn

Размер фотоэлемента d1 выбирается таким, чтобы сфокусированное световое пятно целиком попадало на фотоактивную поверхность фотоэлемента и имело возможность перемещения при угловом рассогласовании ориентации субмодуля. Поскольку диаметр сфокусированного линзой светового пятна равен 0,01F, то минимальный размер фотоэлемента d1 должен быть не меньше этой величины. Размер фотоэлемента d1=0,03F обеспечивает попадание светового пятна на фотоактивную поверхность фотоэлемента при разориентации субмодуля ±30'. Увеличивать размер d1 больше этой величины нецелесообразно из-за высокой стоимости фотоэлементов.

Чтобы обеспечить отвод тепла от фотоэлемента, диаметр d2 круглого теплоотводящего основания либо размеры сторон d2 прямоугольного теплоотводящего основания должны быть не меньше 0,15W. Увеличение размеров теплоотводящего основания приводит к увеличению площади затенения излучения, фокусируемого первичным оптическим концентратором, и уменьшению эффективности фокусировки. Максимальное значение размеров d 2 теплоотводящего основания не должно превышать 0,3W, при этом оптические потери не превышают 10%.

Расстояние L от тыльного стеклянного листа со светоотражающим зеркальным покрытием до фотоэлемента рассчитывается по формуле (4) и определяется фокусным расстоянием линзы F, уменьшенным на суммарную толщину теплоотводящего основания и фотоэлемента z1+z 2 и увеличенным на величину разности хода лучей, возникающую за счет преломления света во вторичном оптическом концентраторе высотой h1.

Светоотражающее зеркальное покрытие на тыльном стеклянном листе может быть нанесено как на фронтальную, так и на тыльную сторону стеклянного листа в виде сплошного слоя. Однако в целях экономии материала светоотражающее зеркальное покрытие может быть выполнено в виде круга, соосного с линзой первичного оптического концентратора. При этом минимальные значения диаметров кругов D1 и D2 ограничиваются геометрическим ходом лучей в оптической системе и могут быть рассчитаны по формулам (5) и (6). Увеличивать диаметры кругов D1 и D2 больше размера W линзы первичного оптического концентратора нецелесообразно.

Настоящий фотоэлектрический концентраторный субмодуль поясняется чертежами, где:

Фотоэлектрический концентраторный субмодульФотоэлектрический концентраторный субмодуль

на фиг.1 показан вид сбоку в разрезе на вариант воплощения настоящего фотоэлектрического концентраторного субмодуля;

вид сбоку в разрезе на другой вариант воплощения настоящего фотоэлектрического концентраторного субмодулявид сбоку в разрезе на другой вариант воплощения настоящего фотоэлектрического концентраторного субмодуля

на фиг.2 приведен вид сбоку в разрезе на другой вариант воплощения настоящего фотоэлектрического концентраторного субмодуля;

вид сбоку в разрезе на третий вариант воплощения настоящего фотоэлектрического концентраторного субмодулявид сбоку в разрезе на третий вариант воплощения настоящего фотоэлектрического концентраторного субмодуля

на фиг.3 изображен вид сбоку в разрезе на третий вариант воплощения настоящего фотоэлектрического концентраторного субмодуля;

вид сбоку в разрезе на четвертый вариант воплощения настоящего фотоэлектрического концентраторного субмодулявид сбоку в разрезе на четвертый вариант воплощения настоящего фотоэлектрического концентраторного субмодуля

на фиг.4 показан вид сбоку в разрезе на четвертый вариант воплощения настоящего фотоэлектрического концентраторного субмодуля;

вид сбоку в разрезе на пятый вариант воплощения настоящего фотоэлектрического концентраторного субмодулявид сбоку в разрезе на пятый вариант воплощения настоящего фотоэлектрического концентраторного субмодуля

на фиг.5 изображен вид сбоку в разрезе на пятый вариант воплощения настоящего фотоэлектрического концентраторного субмодуля.

Настоящий фотоэлектрический концентраторный субмодуль (см. фиг.1) содержит фронтальный стеклянный лист 1, на тыльной стороне которого расположен первичный оптический концентратор в виде линзы 2 квадратной формы с длиной стороны квадрата, равной W, и фокусным расстоянием F. В центральной области поверхности линзы 2 квадратной формы и соосно с ней установлен фотоэлемент 4 толщиной z1, выполненный в виде квадрата со стороной, равной d1, размещенный на теплоотводящем основании 3, выполненном в виде, например, круга диаметром d 2 и толщиной z2. На фотоактивной поверхности фотоэлемента 4 соосно с линзой 2 квадратной формы установлен вторичный оптический концентратор в виде, например, усеченного стеклянного конуса 5, высотой h1, обращенного меньшим основанием к фотоэлементу, с диаметром основания, равным d 1. Параллельно фронтальному стеклянному листу 1 установлен тыльный стеклянный лист 6 со светоотражающим зеркальным покрытием 7. Расстояние от светоотражающего зеркального покрытия 7 до фотоэлемента 4 равно L. Величины F, W, d1, d2, z 1, z2 h1 и L удовлетворяют приведенным выше соотношениям (1)-(4).

Вторичный оптический концентратор может быть выполнен (см. фиг.2) в виде стеклянного цилиндра 8 с диаметром основания меньше d1, если размер фотоактивной поверхности фотоэлемента меньше размеров фотоэлемента. Вторичный оптический концентратор может быть выполнен (см. фиг.3) в виде усеченной стеклянной пирамиды 9 с квадратными основаниями, обращенной меньшим основанием к фотоэлементу, с длиной стороны меньшего основания, меньшей d1, если размер фотоактивной поверхности фотоэлемента меньше размеров фотоэлемента. Вторичный оптический концентратор может быть выполнен (см. фиг.4) в виде стеклянной пластины 10 с квадратными основаниями и длиной стороны квадрата, равной d1, если размер фотоактивной поверхности фотоэлемента совпадает с размером фотоэлемента. Вторичный оптический концентратор может быть выполнен (см. фиг.5) в виде короткофокусной плосковыпуклой линзы 11.

При работе настоящего фотоэлектрического концентраторного субмодуля с фотоэлементом 4, ориентированного перпендикулярно солнечным лучам, солнечное излучение, попадающее на входную апертуру первичного оптического концентратора в виде линзы 2 квадратной формы, преломляется ею и, после отражения зеркальным покрытием 7 тыльного стеклянного листа 6, фокусируется на большем основании вторичного оптического концентратора в виде усеченного стеклянного конуса 5. После преломления на входной поверхности усеченного стеклянного конуса частичного отражения от боковой поверхности усеченного стеклянного конуса, световой пучок через меньшее основание усеченного стеклянного конуса 5 попадает на фотоактивную поверхность фотоэлемента 4. При этом разориентационная характеристика фотоэлектрического концентраторного субмодуля, определяемая соотношением размеров фотоактивной поверхности фотоэлемента 4 и диаметром фокального пятна, остается более высокой, чем в фотоэлектрических модулях без вторичного оптического концентратора; распределение концентрации солнечного излучения на фотоактивной поверхности фотоэлемента 4 более однородное, чем в фокальном пятне первичного концентратора. Более однородное распределение концентрации солнечного излучения по поверхности фотоэлемента 4 приводит к уменьшению локального перегрева фотоэлемента 4, повышению надежности его работы и увеличению эффективности преобразования солнечного излучения в электрическую энергию. Соосное размещение линзы 2 первичного оптического концентратора и фотоэлемента 4 на тыльной стороне фронтального стеклянного листа 1 обеспечивает высокую точность взаимного расположения элементов конструкции, а отражение света светоотражающим зеркальным покрытием 7 тыльного стеклянного листа 6 позволяет почти в 2 раза уменьшить толщину субмодуля по сравнению с величиной фокусного расстояния линзы F.

Использование предложенного фотоэлектрического концентраторного субмодуля дает большой экономический эффект, обусловленный тем, что концентраторный субмодуль прост по конструкции, технологичен при сборке, обладает высокими фотоэлектрическими характеристиками, обеспечивает надежную и долговременную эксплуатацию.

Формула изобретения

1. Фотоэлектрический концентраторный субмодуль, включающий фронтальный стеклянный лист, на тыльной стороне которого расположен первичный оптический концентратор в виде линзы квадратной формы с длиной стороны квадрата, равной W, и фокусным расстоянием F, в центральной области поверхности линзы квадратной формы и соосно с ней установлен фотоэлемент толщиной z1, выполненный в виде квадрата со стороной, равной d1, размещенный на теплоотводящем основании, выполненном в виде круга диаметром d2 или прямоугольника с длиной большей стороны d 2 и толщиной z2, на фотоактивной поверхности фотоэлемента соосно с линзой квадратной формы установлен вторичный оптический концентратор высотой h1, параллельно фронтальному стеклянному листу установлен тыльный стеклянный лист со светоотражающим зеркальным покрытием, расстояние от которого до фотоэлемента равно L, при этом величины F, W, d1, d2 , z1, z2, h1 и L, выраженные в см, удовлетворяют соотношениям

где n1 - показатель преломления материала вторичного оптического концентратора.

2. Субмодуль по п.1, отличающийся тем, что первичный оптический концентратор выполнен в виде линзы Френеля.

3. Субмодуль по п.1, отличающийся тем, что первичный оптический концентратор выполнен в виде плоско-выпуклой линзы.

4. Субмодуль по п.1, отличающийся тем, что теплоотводящее основание выполнено в виде байпасного диода, изготовленного из кремниевой пластины с p-n переходом, полярность которого противоположна полярности p-n перехода фотоэлемента.

5. Субмодуль по п.1, отличающийся тем, что теплоотводящее основание выполнено из меди.

6. Субмодуль по п.1, отличающийся тем, что светоотражающее зеркальное покрытие расположено на фронтальной стороне тыльного стеклянного листа.

7. Субмодуль по п.6, отличающийся тем, что светоотражающее зеркальное покрытие выполнено в виде круга диаметром D1, соосного с линзой Френеля, при этом диаметр круга D1 удовлетворяет соотношению

8. Субмодуль по п.1, отличающийся тем, что светоотражающее зеркальное покрытие установлено на тыльной стороне тыльного стеклянного листа и покрыто защитным материалом, устойчивым к воздействию окружающей среды.

9. Субмодуль по п.8, отличающийся тем, что светоотражающее зеркальное покрытие выполнено в виде круга диаметром D2, соосного с линзой Френеля, при этом диаметр круга D2 удовлетворяет соотношению


где n2 - показатель преломления тыльного стеклянного листа,
h2 - толщина тыльного стеклянного листа, см.

10. Субмодуль по п.1, отличающийся тем, что вторичный оптический концентратор выполнен в виде усеченного стеклянного конуса, обращенного меньшим основанием к фотоэлементу, с диаметром меньшего основания, равным или меньшим d1 .

11. Субмодуль по п.1, отличающийся тем, что вторичный оптический концентратор выполнен в виде стеклянного цилиндра с диаметром основания, равным или меньшим d1.

12. Субмодуль по п.1, отличающийся тем, что вторичный оптический концентратор выполнен в виде усеченной стеклянной пирамиды с квадратными основаниями, обращенной меньшим основанием к фотоэлементу, с длиной стороны меньшего основания, равной или меньшей d 1.

13. Субмодуль по п.1, отличающийся тем, что вторичный оптический концентратор выполнен в виде стеклянной пластины с квадратными основаниями и длиной стороны квадрата, равной или меньшей d1.

14. Субмодуль по п.1, отличающийся тем, что вторичный оптический концентратор выполнен в виде короткофокусной плосковыпуклой линзы.

rnrnrnrnrnrnrnrnrn

Имя изобретателя: Андреев Вячеслав Михайлович (RU), Давидюк Николай Юрьевич (RU), Румянцев Валерий Дмитриевич (RU), Садчиков Николай Анатольевич (RU)
Имя патентообладателя: Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук
Почтовый адрес для переписки: 194021, Санкт-Петербург, ул. Политехническая, 26, ФТИ им. А.Ф. Иоффе РАН, патентно-лицензионная служба, В.И. Белову
Дата начала отсчета действия патента: 24.04.2012

Разместил статью: admin
Дата публикации:  18-11-2013, 14:14

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Токопроводящая серебряная паста для тыльного электрода солнечного элемента
Изобретение относится к материалам для изготовления электропроводящих слоев методом трафаретной печати и может быть использовано в производстве кремниевых солнечных элементов для формирования тыльного электрода на кремниевых подложках р-типа. Токопроводящая серебряная паста для тыльного электрода солнечного элемента включает в себя мелкодисперсный порошок серебра 45-50 мас.%, стеклофритту 3-9 мас.%, предпочтительно 3-6 мас.% и органическое связующее 46-52 мас.%. Порошок серебра имеет средний...

Солнечная многофункциональная сильноконцентрирующая энергоустановка
Изобретение относится к гелиоэнергетике, к высокоэффективным солнечным сильноконцентрирующим энергоустановкам. Технический результат состоит в преобразовании солнечной энергии при более низкой температуре приемника не только в электрическую, но и механическую энергию, энергию монохроматического излучения, а также в электромагнитную энергию радиопередатчика при радиосвязи. Солнечная энергоустановка содержит первичный и вторичный концентраторы, приемник, расположенный в вершине первичного...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: 55+55-10/2=?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Способ создания многослойной наноструктуры

Способ создания многослойной наноструктуры Изобретение относится к различным областям техники, использующим материалы с развитыми поверхностями в виде многослойных наноструктур для…
читать статью
Солнечная энергетика, Солнечные, ветровые, геотермальные теплогенераторы, Осветительная арматура и оборудование
Фотоэлектрическая битумная черепица

Фотоэлектрическая битумная черепица Изобретение относится к фотоэлектрической битумной черепице для фотоэлектрической кровли. Технический результат: создание фотоэлектрической…
читать статью
Покрытия зданий и сооружений, Солнечная энергетика
Ветроэнергетический комплекс

Ветроэнергетический комплекс Ноу-хау разработки, а именно данное изобретение автора относится к ветрогелиоэнергетике. Ветроэнергетический комплекс включает несущую башню с…
читать статью
Солнечная энергетика, Ветроэлектростанции
Гелиоэнергетический модуль для преобразования электромагнитного излучения от удаленного источника светового излучения

Гелиоэнергетический модуль для преобразования электромагнитного излучения от удаленного источника светового излучения Ноу-хау разработки, а именно данное изобретение автора относится к солнечной энергетике и может найти применение в электростанциях для прямого…
читать статью
Солнечная энергетика, Солнечные, ветровые, геотермальные теплогенераторы
Преобразователь энергии на базе планетарного циклоидального редуктора - ПЭ ПЦР

Преобразователь энергии на базе планетарного циклоидального редуктора - ПЭ ПЦР Изобретение относится к области электротехники, в частности к преобразователям энергии в виде мотор-редукторов и электроприводов, и может быть…
читать статью
Геотермальные, волновые и гидроэлектростанции, Солнечная энергетика, Ветроэлектростанции
Способ работы автономной энергетической установки на возобновляемом источнике энергии мощностью 0,5-16,0 кВт

Способ работы автономной энергетической установки на возобновляемом источнике энергии мощностью 0,5-16,0 кВт Область использования: в энергетике на возобновляемых источниках энергии; тепло-электроснабжение локальных жилых строений. Сущность изобретения:…
читать статью
Геотермальные, волновые и гидроэлектростанции, Солнечная энергетика, Ветроэлектростанции
Гелиоэнергетический модуль для преобразования принимаемого электромагнитного излучения и система его ориентации

Гелиоэнергетический модуль для преобразования принимаемого электромагнитного излучения и система его ориентации Ноу-хау разработки, а именно данное изобретение автора относится к солнечной энергетике и может найти применение в солнечных электростанциях для…
читать статью
Солнечная энергетика
Гелиоэнергетическая установка

Гелиоэнергетическая установка Назначение изобретения: для обеспечения электроэнергией и теплом промышленных и жилых объектов, в том числе отдельно стоящих зданий и их частей,…
читать статью
Солнечная энергетика
Гелиовоздушно-гидравлическая электростанция

Гелиовоздушно-гидравлическая электростанция Назначение: в народном хозяйстве. Сущность изобретения: гелиовоздушно-гидравлическая электростанция экологически чиста, имеет два энергопроизводящих…
читать статью
Солнечная энергетика
Модуль солнечной электростанции

Модуль солнечной электростанции Ноу-хау разработки, а именно данное изобретение автора относится к автономным солнечным электростанциям на основе фотоэлектрических преобразователей.…
читать статью
Солнечная энергетика
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
pi31453_53
Публикаций: 9
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
kapriolree
Публикаций: 0
Комментариев: 0
gustavoytd
Публикаций: 0
Комментариев: 0
Mihaelsjp
Публикаций: 0
Комментариев: 0
agrohimxpa
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru