Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Способ работы двигателя внутреннего сгорания
Изобретения Российской Федерации » Двигатели и движители » Двигатели внутреннего сгорания
Способ работы двигателя внутреннего сгорания Сущность изобретения: способ работы двигателя внутреннего сгорания осуществляется путем возвратно-поступательных перемещений поршней в рабочем и расширительном цилиндрах, соединенных каналом, при этом поршень расширительного цилиндра перемещается впереди поршня рабочего цилиндра. Двигатель внутреннего сгорания содержит поршни рабочего основного и расширительного цилиндров, подключенные к кривошипам вала двигателя, при этом угол развала кривошипов составляет 5 - 20o....
читать полностью


» Изобретения Российской Федерации » Двигатели и движители » Двигатели внутреннего сгорания
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
0
Добавить эту страницу в свои закладки на сайте »

Винтошаровой четырехтактный двигатель


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2347088

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к области машиностроения, а более конкретно к поршневым двигателям внутреннего сгорания, которые принадлежат к распространенному и многочисленному классу тепловых двигателей, в которых тепловая энергия, выделяемая при сгорании топлива, преобразуется в механическую полезную работу. В этих двигателях процессы сгорания топлива, выделение теплоты и преобразование ее в механическую работу происходят непосредственно внутри двигателя.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известен двигатель внутреннего сгорания с бесшатунным механизмом (СССР авторское свидетельство №118471, кл. F01 B 9/02, 1958 г).

Бесшатунный двигатель имеет звездообразное расположение цилиндров, а поршни попарно жестко соединены между собой штоками, сочлененными через подшипники со средними шейками коленчатого вала, имеющего вращение шеек, с перемещением поршневых систем и связанных их штоков по оси противоположных цилиндров. Рабочий вал у этого двигателя выполнен из двух частей с кривошипами, несущими подшипники для закрепления в них на радиусе одной четверти хода поршня крайних шеек коленчатого вала, и снабжен соединительным валом, фиксирующим с помощью шестерен положение кривошипов обеих частей рабочего вала друг относительно друга.

Недостатком этого двигателя является усложненная конструкция кривошипного бесшатунного механизма, который имеет дополнительный соединительный вал с шестернями, фиксирующими положения частей кривошипов относительно друг друга, а также наличие коленчатого вала.

Из патентной литературы известен двигатель внутреннего сгорания, патент США №4553503, кл. F02B 75/25, 1985 г., второй вариант, фиг.24 и 25, который принят за прототип.

Двигатель содержит блок цилиндров с аксиально расположенными цилиндрами, в которых установлены с возможностью возвратно-поступательного движения поршни, головку блока с впускными и выпускными клапанами, корпус двигателя, в котором установлен механизм преобразования возвратно-поступательных движений поршней во вращение вала. По образующей цилиндра ротора этого механизма выполнены правого и левого направлений дуговые желоба, в этих желобах установлены шарики, погруженные наполовину диаметра, а вторые их половины диаметра установлены в сферических отверстиях ползунов, шарики установлены с возможностью взаимодействия с желобами ротора и со сферическими отверстиями ползунов при взаимодействии мелких шариков, а ползуны соединены штоками с поршнями.

rnrnrnrnrnrnrnrnrn

Основными недостатками этих двигателей являются:

Профили дуговых желобов на цилиндрической поверхности втулки ротора выполнены с двумя точками перегиба /см. фиг.31/. При таком угловом расположении желобов четырехтактный цикл четырехтактного двигателя осуществляется за два оборота ротора, т.к. ход поршня осуществляется за поворот ротора на угол 180°, аналогично, как и у двигателей с кривошипно-шатунным механизмом.

Возвратно-поступательные движения ползунов осуществляются в направляющих скольжения, а силы от давления газов в цилиндре действуют на один шарик, установленный в ползуне. Результирующая сила от давления газов в цилиндре параллельно переносится из осевого направления ползуна в точку контакта с профилем желоба ротора. В результате, согласно теореме о параллельном переносе сил возникает момент, равный результирующей силе относительно точки контакта шарика с профилем желоба ротора /см. книгу С.М.Тарг. Краткий курс теоретической механики. Наука. Москва, 1964 г., стр.58, п.21/. От этого момента возникают трения ползуна по направляющим, а также и поршня о стенки цилиндра, т.к. ползун выполнен за одно целое со штоком поршня. Кроме того, в точке контакта шарика с профилем желоба результирующая сила раскладывается в силовой многоугольник сил и одна из составляющих создает трение ползуна по направляющим.

Все приведенные потери на трение в значительной степени снижают мощность двигателя.

Если этот двигатель будет иметь диаметры цилиндров 100 мм и максимальное давление в цилиндре 54 кгс/см2, то результирующая сила, действующая на поршень от расширения газов в цилиндре, будет равна 4240 кгс. А при параллельном переносе сил эта результирующая сила переносится на шарик. В результате статическая нагрузка на шарик с учетом контактных напряжений по Герцу должна быть больше или равна результирующей силе.

Статическая нагрузка определяется произведением

где β - угол контакта шарика с профилем желоба, который в среднем может быть равен 36°, а cos=0,80902.

Приравняв результирующую силу к статической нагрузке и решив приведенное произведение относительно диаметра шарика, его диаметр будет равен 64,75 мм, а вес 1,13 кг.

При таком диаметре шарика конструкция ползуна будет значительно увеличена по массе. А как известно, сила инерции прямолинейно движущихся частей равна произведению массы прямолинейно движущихся частей на ускорение поршня, взятые с обратным знаком. Силы инерции в начале хода поршня противодействуют его движению, а на второй половине, наоборот, помогают. Но расширение газов в цилиндре осуществляется в начале хода поршня, как это видно из индикаторной диаграммы /см. книгу С.С.Баландин. "Бесшатунные двигатели внутреннего сгорания". "Машиностроение", Москва, 1972 г., с.141, рис 1/.

rnrnrnrnrnrnrnrnrn

При большой массе у ползуна увеличиваются и силы инерции, а это в значительной степени снижает мощность двигателя и уменьшается срок службы двигателя.

Механизм, преобразующий возвратно-поступательные движения поршней во вращательное движение вала ротора, имеет существенные недостатки. Отсутствие осевого поступательного движения шарика относительно ползуна. Ввиду этого качение шарика по профилю желоба втулки ротора не может осуществляться, а происходит скольжение с повышенным трением, т.к. скорость центра шарика равна половине линейной скорости движения хода поршня

где v0 - средняя скорость движения хода поршня.

Высота профиля желобов от верхней точки перегиба до нижней точки равна длине хода поршня. Но при качении шарика по желобу шарик проходит путь, равный половине этой длины хода поршня. А так как отсутствует осевое поступательное движение шарика относительно ползуна, то возникает скольжение с повышенным трением, которое в значительной степени снижает мощность двигателя.

Индикаторная мощность у каждого двигателя зависит от среднего индикаторного давления Р. С увеличением среднего индикаторного давления возрастает индикаторная мощность и степень использования рабочего объема цилиндра. Максимальное значение среднего индикаторного давления в различных двигателях зависит от многих факторов, которые имеются в каждом конкретном двигателе.

Зная среднее индикаторное давление Р, можно определить индикаторную мощность двигателя.

Тангенциальную силу Т, касательную к контактной окружности вращения ротора, которая создает крутящий момент, можно определить по соотношению

где Р0 - атмосферное давление,

 βср - среднее значение угла подъема профиля желоба по контактной дорожке качения, которое равно 27°55', а тангенс 0,5298.

Из приведенного соотношения видно, что для получения полезной работы используется 52,88% среднего индикаторного давления, а 47,02% теряется.

У двигателей с кривошипно-шатунным механизмом для получения полезной работы используется 67,29% среднего индикаторного давления при отношении радиуса кривошипа к длине шатуна, равном 1/38.

Известен бескривошипный четырехтактный двигатель, патент Российской Федерации №2187673, F02В 75/25, F01В 9/06 от 24.04.2001 г.

Двигатель содержит блок цилиндров с аксиально расположенными цилиндрами, в которых расположены с возможностью возвратно-поступательного движения поршни, головку блока цилиндров, в которой установлены клапана, корпус блока, в котором установлен многопериодный пространственный силовой механизм, преобразующий возвратно-поступательные движения поршней во вращательное движение вала двигателя. На передней и задней торцевых поверхностях обода ротора-маховика многопериодного пространственного силового механизма выполнены правого и левого направлений тородуговинтовые профили с четным количеством полупериодов. Каждый полупериод правого направления последовательно сопряжен с полупериодом левого направления. Полупериоды разделены эллиптическими и гиперболическими точками перегиба. Каждая эллиптическая точка перегиба является верхней мертвой точкой осевого хода поршня, а гиперболическая точка перегиба является нижней мертвой точкой осевого хода поршня. Передний тородуговинтовой профиль в радиальной плоскости образован дугой окружности передней радиальной кривизны и выполнен наклонным относительно радиальной плоскости. Задний тородуговинтовой профиль в радиальной плоскости образован дугой окружности задней радиальной кривизны и выполнен наклонным относительно радиальной плоскости.

rnrnrnrnrnrnrnrnrn

В вилковидных головках штока установлены рабочий и вспомогательный ролики, на наружных поверхностях которых выполнены желоба. Рабочий и вспомогательный ролики установлены с возможностью взаимодействия с тородуговинтовыми профилями обода ротора-маховика. Газораспределительный механизм выполнен в виде двух кулачковых валиков, соосно соединенных конической шестерней. Коническая шестерня кинематически связана с конической шестерней, установленной на валу двигателя. Клапана в цилиндрах установлены на равных расстояниях от диаметральной плоскости блока цилиндров и параллельно плоскости.

Техническая задача, решаемая изобретением, не порочит новизну изобретения патента №2187673.

В данном техническом решении целесообразно применено конструктивное исполнение газораспределительного механизма, которое запатентовано в вышеприведенном патенте.

Техническая задача, решаемая изобретением:

Создание надежного в работе, простого и компактного по конструктивному исполнению нового бескривошипного двигателя внутреннего сгорания, у которого каждый цилиндр снабжен своим винтошаровым механизмом, в котором возвратно-поступательные движения поршней преобразуются во вращательные движения.

Осуществление полноценного использования сил среднего индикаторного давления в полезную работу, чем достигается повышение эффективной мощности двигателя без изменения процессов в цилиндрах.

Снижение удельного расхода топлива на единицу мощности.

Осуществление точного направленного движения поршневых штоков и поршней в цилиндрах.

Снижение механических потерь во всех кинематических парах.

Снижения трения в парах поступательного движения.

Повышение КПД двигателя в целом.

Техническая задача решена тем, что каждый цилиндр снабжен своим винтошаровым механизмом, преобразующим возвратно-поступательные движения поршней во вращательные движения приводного вала. Ротор винтошарового механизма установлен соосно с поршневым штоком и соединен через посредство двухрядного упорного и радиального подшипников, а с приводным валом соединен шаровым соединением. По образующей цилиндрической поверхности ротора винтошарового механизма выполнены правого и левого направлений винтодуговые желоба с углом наклона винтовых линий на угол 45° и с четным количеством полупериодов движений. Каждый полупериод правого направления последовательно сопряжен с полупериодом левого направления дугами окружностей равной кривизны. Полупериоды разделены верхней и нижней точками перегиба, а каждая верхняя точка перегиба является верхней мертвой точкой хода поршня, а нижняя точка перегиба является нижней мертвой точкой хода поршня. Профили в верхней и нижней точках перегиба выполнены полуэллипсовидными в виде двух боковых дуг окружностей радиусом Rж касательно сопряженных дугами впадин с углом контакта, равным 45° относительно перпендикуляра к оси ротора, проходящего через центр шара и по развернутой делительной окружности цилиндра ротора на плоскость образованы выпуклыми и вогнутыми дугами окружностей одинаковым по величине радиусом R, которые плавно и касательно сопряжены винтовыми линиями правого и левого направлений, а расстояние от верхней точки перегиба до нижней точки перегиба равно половине хода поршня H=0,5S. Профили правого и левого желобов в поперечном сечении дуговые, очерченные радиусом Rж, c углом контакта, равным 45° относительно радиальной плоскости, проходящей через центр шара 17. Контактные дорожки качения правого и левого желобов выполнены в зависимости от направления движения поршня - прямого хода "П" и возвратного хода "В". В желобах ротора через полупериод установлены шары, которые размещены в гнездах сепаратора, выполненного в виде кольца. Блок цилиндров установлен соосно с корпусом двигателя, а выполненные в корпусе отверстия соосно совмещены с цилиндрами. В каждом отверстии корпуса двигателя на равных расстояниях по окружности выполнены оваловидного профиля пазы, а в этих пазах установлены оваловидного профиля упорные вкладыши. На обращенных к ротору поверхностях у этих вкладышей выполнены ответные дуговые желоба с углом контакта, равным 45° относительно радиальной плоскости, проходящей через центр шара осевого направления. Шары взаимодействуют с дорожками качения желобов ротора и с дорожками качения упорных вкладышей, выполненных в желобах. По образующей внутреннего отверстия ротора винтошарового механизма выполнены полуэллипсовидного профиля канавки осевого направления, образованные в виде двух дуг окружностей радиусом Rжн касательно сопряженных дугами впадин с углом контактного давления, равным 45° относительно радиальной плоскости, проходящей через центры шариков. Ответные полуэллипсовидного профиля канавки выполнены и по образующей поверхности цилиндра приводного вала. В канавках размещены ряды шариков, которые установлены в гнездах сепаратора, выполненного в виде втулки. Шарики установлены с возможностью взаимодействия с дорожками качения ротора и приводного вала, выполненных на боковых поверхностях канавок у ротора и у приводного вала. По образующей поверхности цилиндра поршневого штока выполнены полуэллипсовидного профиля канавки, образованные в виде двух дуг окружностей радиусом Rжн касательно сопряженных дугами впадин с углом давления, равным 45° относительно радиальной плоскости, проходящей через центры шариков с дорожками качения на боковых поверхностях. Ответные полуэллипсовидного профиля канавки выполнены и в отверстии направляющей втулки штока. В канавках поршневого штока и направляющей втулки установлены ряды шариков, которые установлены в гнездах сепаратора, выполненного в виде втулки. Шарики взаимодействуют с дорожками качения поршневого штока и направляющей втулки, а дорожки качения выполнены на боковых поверхностях канавок направляющей втулки. Приводные валы винтошарового механизма своими шестернями соединены с шестерней вала двигателя.

Ротор винтошарового механизма с приводным валом и поршневой шток с направляющей втулкой штока соединены шариковыми соединениями качения с контактом каждого шарика на четыре точки и углом давления, равным 45° относительно радиальной плоскости, а отношение радиуса Rжн к диаметру шарика в диапазоне 0,505-0,520dш .

За один оборот ротора винтошарового механизма при шести полупериодах движений осуществляется полтора четырехтактных рабочих цикла или три четырехтактных рабочих цикла за два оборота ротора.

Расстояние от верхней точки перегиба до нижней точки перегиба винтодуговых желобов ротора при двухточечном контакте шаров с винтодуговыми желобами ротора и желобами упорных вкладышей определено величиной Н=0,5S, а при трехточечном контакте это расстояние будет равно Н=2/3S.

При трехточечном контакте желоба у упорных вкладышей выполнены в виде двух боковых дуг окружностей радиусом Rж касательно сопряженных дугами впадин с углом контакта, равным 45° относительно плоскости проходящей через центр шара, т.е. полуэллипсовидными.

Длина желобов у упорных вкладышей определена в зависимости от точек контактов шаров с винтодуговыми желобами и желобами упорных вкладышей. При двухточечном контакте длина равна Н=0,5S+0,707dш, а при трехточечном контакте эта длина будет равна Н=2/3S+0,707d ш.

По образующей цилиндрической поверхности ротора винтошарового механизма выполнены правого и левого направлений винтодуговые желоба с углом наклона винтовых линий на угол 45° с четным количеством полупериодов t, а профили желобов в поперечном сечении /по нормали/ выполнены полуэллипсовидными, образованными в виде двух боковых дуг окружностей радиусом R ж касательно сопряженных дугами впадин с углом контакта, равным 45° относительно перпендикуляра к оси ротора, проходящего через центр шара, ответные осевого направления полуэллипсовидного профиля желоба в поперечном сечении выполнены и на обращенных к ротору поверхностях в упорных вкладышах, а установленные в желобах шары взаимодействуют с контактными дорожками, образуя четырехточетный контакт.

В зависимости от назначения двигателя ротор винтошарового механизма может иметь четыре полупериода движений, шесть полупериодов движений, восемь полупериодов движений и т.д. Контакт шаров с желобами: двухточечный, трехточечный и четырехточечный.

Углы подъема винтовых линий, в пределах от 20 до 60°, а более оптимальный - угол 45°.

Количество цилиндров определяется в зависимости от назначения двигателя и его мощности: двухцилиндровые, четырехцилиндровые, шестицилиндровые, восьмицилиндровые и т.д.

Винтошаровые двигатели могут изготавливаться в виде блоков, соединенных (несколько блоков) редуктором.

Например, три блока по четыре цилиндра в каждом блоке. В этом варианте трехблочный четырехтактный двигатель будет иметь мощность 688,5 л.с. или 506,3 кВт. А трехблочный двухтактный двигатель по четыре цилиндра в блоке будет иметь мощность 1377 л.с. или 1012,5 кВт, а число оборотов 750 об/мин.

Трехблочный двухтактный двигатель может быть применен в качестве главного двигателя на вертолете.

Двигатели, цилиндры которых снабжены винтошаровыми механизмами, конструктивно просты. Для их изготовления не требуется специального оборудования.

Двигатели экологически чисты, т.к. расход топлива 121 г/лошадиную силу в час или 155 г/кВт час.

Изобретение поясняется чертежами.

винтошаровой четырехтактный двигатель, продольный разрез;винтошаровой четырехтактный двигатель, продольный разрез;

Фиг.1 изображен винтошаровой четырехтактный двигатель, продольный разрез.

винтошаровой четырехтактный двигатель, продольный разрез винтошарового механизмавинтошаровой четырехтактный двигатель, продольный разрез винтошарового механизма

Фиг.2 - то же, продольный разрез винтошарового механизма.

винтошаровой четырехтактный двигатель, вид сверхувинтошаровой четырехтактный двигатель, вид сверху

Фиг.3 - то же, вид сверху в частичном разрезе фиг.1.

винтошаровой четырехтактный двигатель, вид Б на фиг.3винтошаровой четырехтактный двигатель, вид Б на фиг.3

Фиг.4 - то же, вид Б на фиг.3.

винтошаровой четырехтактный двигатель, профили желобов ротора развернутой делительной окружности.винтошаровой четырехтактный двигатель, профили желобов ротора развернутой делительной окружности.

Фиг.5 - винтошаровой четырехтактный двигатель, профили желобов ротора развернутой делительной окружности.

винтошаровой четырехтактный двигатель, поперечный разрез по А-А фиг.2винтошаровой четырехтактный двигатель, поперечный разрез по А-А фиг.2

Фиг.6 - винтошаровой четырехтактный двигатель, поперечный разрез по А-А фиг.2.

винтошаровой четырехтактный двигатель, сечение взаимодействия шара с желобами ротора и упорного вкладышавинтошаровой четырехтактный двигатель, сечение взаимодействия шара с желобами ротора и упорного вкладыша

rnrnrnrnrnrnrnrnrn

Фиг.7 - винтошаровой четырехтактный двигатель, сечение взаимодействия шара с желобами ротора и упорного вкладыша.

винтошаровой четырехтактный двигатель, сечение взаимодействия шариков шаровых соединений качения с контактом шариков на четыре точкивинтошаровой четырехтактный двигатель, сечение взаимодействия шариков шаровых соединений качения с контактом шариков на четыре точки

Фиг.8 - винтошаровой четырехтактный двигатель, сечение взаимодействия шариков шаровых соединений качения с контактом шариков на четыре точки.

винтошаровой четырехтактный двигатель, схема взаимодействия шара с желобом ротора и упорного вкладыша в момент начала хода поршнявинтошаровой четырехтактный двигатель, схема взаимодействия шара с желобом ротора и упорного вкладыша в момент начала хода поршня

Фиг.9 - винтошаровой четырехтактный двигатель, схема взаимодействия шара с желобом ротора и упорного вкладыша в момент начала хода поршня.

винтошаровой четырехтактный двигатель, вид упорного вкладыша и его желобавинтошаровой четырехтактный двигатель, вид упорного вкладыша и его желоба

Фиг.10 - винтошаровой четырехтактный двигатель, вид упорного вкладыша и его желоба.

винтошаровой четырехтактный двигатель, схема взаимодействия шара с желобом ротора и упорного вкладыша в момент возвратного хода поршня.винтошаровой четырехтактный двигатель, схема взаимодействия шара с желобом ротора и упорного вкладыша в момент возвратного хода поршня.

Фиг.11 - винтошаровой четырехтактный двигатель, схема взаимодействия шара с желобом ротора и упорного вкладыша в момент возвратного хода поршня.

Винтошаровой четырехтактный двигатель содержит блок цилиндров 1, к торцам которого соосно присоединены корпус двигателя 2 и головка блока цилиндров 3. В блоке цилиндров 1 в аксиальных и диаметрально противоположных один другому отверстиях установлены цилиндры 4, в которых с возможностью возвратно-поступательного движения установлены поршни 5. В корпусе двигателя 2 соосно цилиндрам выполнены отверстия, в которых установлены роторы 6 винтошаровых механизмов, преобразующих движения. Каждый ротор 6 установлен на приводном валу 7 и соосно соединен через посредство совмещенных двухрядного упорного и радиального шарикоподшипников с поршневым штоком 8. Ротор 6 выполнен в виде полого цилиндра с внутренним фланцем. На внешнем выступе фланца выполнен желоб упорного двухрядного шарикоподшипника. На торцевых поверхностях фланца 9 поршневого штока 8 выполнены желоба. Ответные желоба выполнены и на внешней обойме 10. Между желобом ротора установлены ряды шариков 11, размещенные в гнездах сепараторов. Шарики 11 установлены с возможностью взаимодействия с желобами фланца ротора 6, фланца поршневого штока и обоймы 10 в целом являются двухрядным упорным шарикоподшипником. В отверстии фланца ротора 6 выполнен желоб. Ответный желоб выполнен и на цапфе поршневого штока 8. Между желобами фланца ротора и цапфы поршневого штока установлены ряды шариков 12, которые размещены в гнездах сепаратора. Шарики 12 установлены с возможностью взаимодействия с желобами фланца ротора и цапфой поршневого штока, а в целом являются радиальным шарикоподшипником. Совмещенные шарикоподшипники закрыты крышкой 13, а крышка сцентрирована и закреплена к фланцу ротора 6. По образующей цилиндрической поверхности ротора 6 выполнены правого и левого направлений винтодуговые желоба 14 с углом наклона винтовых линий на угол 45° с четным количеством полупериодов движений. Каждый полупериод правого направления последовательно сопряжен с полупериодом левого направления дугами окружностей равной кривизны. Полупериоды разделены верхней 15 и нижней 16 точками перегиба. Профили желобов в верхней и нижней точках перегиба выполнены полуэллипсовидными в виде двух боковых дуг окружностей радиусом Rж касательно сопряженных дугами впадин с углом контакта, равным 45° относительно перпендикуляра к оси ротора, проходящего через центр шара 17. Расстояние от верхней точки перегиба до нижней точки перегиба определено величиной Н. Величина этого расстояния определена в прямой зависимости от количества точек контакта шаров 17 с желобами ротора и упорных вкладышей.

При двухточечном контакте Н=0,5S.

При трехточечном контакте Н=2/3S,

где S - ход поршня.

Профили правого и левого винтодуговых желобов ротора в поперечном сечении дуговые, очерченные радиусом Rж с углом контакта, равным 45° относительно радиальной плоскости, проходящей через центр шара 17. Делительная окружность в поперечном сечении ротора 6 совмещена с дорожками качения как правого, так и левого направлений полупериодов движений. Контактные дорожки качения правого и левого желобов выполнены в прямой зависимости от направления движения поршня - прямого хода "П" и возвратного хода "В". В желобах ротора 6 через полупериод t установлены шары 17, которые размещены в гнездах сепаратора 18, который выполнен в виде кольца.

В каждом отверстии корпуса двигателя 2 на равных расстояниях по окружности выполнены оваловидные пазы, в которых установлены упорные вкладыши 19 с осевыми желобами, обращенными к поверхности ротора 6. Желоба у упорных вкладышей выполнены в зависимости от точечного контакта шаров 17 с желобами ротора. При двухточечном контакте шаров 17 желоба у упорных вкладышей в поперечном сечении дуговые, очерченные радиусом Rж с углом контакта, равным 45° относительно радиальной плоскости, проходящей через центр шара 17. При трехточечном контакте шаров 17 желоба у упорных вкладышей выполнены полуэллипсовидными в виде двух боковых дуг окружностей радиусом Rж касательно сопряженных дугами впадин с углом контакта, равным 45° относительно радиальной плоскости, проходящей через центр шара. В этом исполнение шары 17 контактируют с упорными вкладышами на две точки. Шары 17 установлены с возможностью взаимодействия с желобами ротора и упорных вкладышей. По образующей цилиндра внутреннего отверстия ротора 6 выполнены полуэллипсовидного профиля осевого направления канавки 20, образованные в виде двух боковых дуг окружностей радиусом R жн, касательно сопряженных дугами впадин с углом контакта - давления, равным 45° относительно радиальной плоскости, преходящей через центры шариков 21. Ответное полуэллипсовидного профиля канавки 22 осевого направления выполнены и по образующей цилиндра приводного вала 7, между канавками размещены ряды шариков 21, установленные в гнездах сепаратора 23, выполненного в виде втулки. Шарики 21 установлены с возможностью взаимодействия с канавками ротора 6 и канавками приводного вала 7, а в целом составляют шариковое соединение качения с четырехточечным контактом шариков с канавками. При наличии этого соединения осуществляется возвратно-поступательное движение-качение и одновременно передача вращающегося момента от ротора к приводному валу, т.е. передача крутящего момента от ротора к приводному валу.

По образующей поверхности цилиндра поршневого штока 8 выполнены полуэллипсовидного профиля канавки 24, образованные в виде двух дуг окружностей по бокам радиусом Rжн касательно сопряженных дугами впадин с углом давления, равным 45° относительно радиальной плоскости, проходящей через центры шариков 25. Ответные полуэллипсовидного профиля канавки 26 выполнены и в отверстии направляющей втулки 27 поршневого штока. Между канавками установлены ряды шариков 25, размещенные в гнездах сепаратора 28, выполненного в виде втулки. Шарики 25 установлены с возможностью взаимодействия с дорожками качения канавок поршневого штока и направляющей втулки. Направляющая втулка 27 установлена и закреплена к торцу корпуса двигателя 2. Поршни 5 сцентрированы и соединены со штоком резьбовым соединением и застопорены шайбой 29. Приводные валы 7 установлены на шарикоподшипниковых опорах 30 и 31, а между этих опор на валах установлены шестерни 32. Центральный вал двигателя 33 установлен на трех шарикоподшипниковых опорах 34, 35 и 36, а между опорами 30 и 34 а на валу установлена шестерня 37, которая кинематически связана с шестернями приводных валов.

На валу 33 установлена шестерня 37, которая кинематически связана с шестернями 32 приводных валов 7. За одно целое с валом 33 выполнена шестерня 38 привода маслонасоса /который на чертеже не показан/. На центральном валу 33 установлены шестерня 39 привода вспомогательных механизмов и шестерня 40 привода газораспределительного механизма.

Газораспределительный механизм выполнен в виде двух кулачковых распределительных валиков 41, соосно соединенных конической шестерней 42, которая кинематически связана с конической шестерней 40, установленной на центральном валу двигателя. Впускные 43 и выпускные 44 клапана установлены в головке блока цилиндров 3 на равных расстояниях от диаметральной плоскости и перпендикулярно этой плоскости. Впускные 43 и выпускные 44 клапана приводятся в действие соответствующими коромыслами 45 и 46, которые установлены на осях 47. Коромысла 45 и 46 содержат регулируемые винты 48, которые взаимодействуют с колпачками 49, и ролики 50, установленные с возможностью взаимодействия с кулачками распределительных валиков 41. Каждый распределительный валик имеет четыре кулачка, расположенных по окружности. Стержень каждого клапана с его пружиной закрыт колпачком 49, а каждый колпачок выполнен в виде стакана и соединен со стержнем клапана. С конической шестерней 39 кинематически связан приводной вал 51 привода вспомогательных механизмов. На конце центрального вала 33 установлен маховик 52 с шестерней сцепления.

Основным механизмом нового двигателя является винтошаровой механизм, который преобразует возвратно-поступательные движения поршней во вращательное движение приводного вала, а основной деталью этого механизма является ротор 6. Ротор 6 совершает сложные движения - возвратно-поступательные вдоль оси и вращательные вокруг той же оси одновременно и передачу крутящего момента. Шариковое соединение ротора 6 с приводным валом 7 обеспечивает возвратно-поступательное движение-качение ротора относительно приводного вала 7 и одновременно передачу вращения и крутящего момента от ротора к приводному валу.

Шариковое соединение поршневого штока 8 направляющей втулкой 27 обеспечивает возвратно-поступательное движение-качение поршневого штока относительно направляющей втулки, а также и прямолинейное движение поршня относительно цилиндра.

Винтошаровой механизм имеет несколько конструктивных вариантов, которые отличаются количеством полупериодов движений, наличием шаров 17 в винтодуговых желобах ротора 6 и количеством точек контакта шаров с желобами ротора и упорных вкладышей 19.

Первый вариант

По наружной цилиндрической поверхности ротора выполнены шесть полупериодов движений, в желобах установлены три шара 17, которые взаимодействуют с желобами ротора и упорными вкладышами при двухточечном контакте.

В этом варианте исполнения за один оборот ротора 6 осуществляется полтора четырехтактных цикла или три четырехтактных цикла за два оборота ротора.

За один полупериод движения ротор проходит путь, равный 0,5S, и одновременно поворачивается на угол 60°.

Передаточное число от приводного вала к валу двигателя равно 1,5.

Второй вариант

По наружной цилиндрической поверхности ротора выполнены четыре полупериода движений, в желобах установлены два шара 17, которые взаимодействуют с желобами ротора и упорными вкладышами при двухточечном контакте.

В этом варианте исполнения за один оборот ротора осуществляется один четырехтактный цикл.

За один полупериод движения ротор проходит путь, равный 0,5S, и одновременно поворачивается на угол 90°.

Передаточное число от приводного вала к валу двигателя равно единице.

При первом и втором вариантах конструктивных исполнений скорость поступательного движения ротора равна половине средней скорости поршня.

Третий вариант

В этом варианте осуществлен трехточечной контакт шаров 17 с желобами ротора и упорными вкладышами. При этом варианте шары 17 одной точкой контактируют с желобами ротора, а двумя точками с упорными вкладышами.

За один полупериод движения ротор проходит путь, равный 2/3S,

где S - осевой ход поршня.

Скорость поступательного движения ротора равна 2/3 средней скорости поршня.

Более предпочтительный вариант первый, т.к. ротор центрируется на три точки по отношению к корпусу двигателя.

Определение параметров увеличения мощности

Основными, параметрами увеличения мощности являются:

Среднее эффективное давление, так как эффективная мощность двигателя прямо пропорциональна среднему эффективному давлению.

Средняя скорость поршня, определяющая быстроходность двигателя.

Среднее эффективное давление меньше среднего индикаторного давления на величину среднего давления механических потерь.

Среднее индикаторное давление - это то давление, которое в течение одного хода поршня совершает работу, равную работе газов за цикл.

Среднее давление механических потерь зависит от конструкции двигателя, а особенно от степени использования рабочего объема цилиндра.

Большие потери среднего индикаторного давления происходят в процессе преобразования возвратно-поступательных движений поршней во вращательное движение коленчатого вала.

Например, у двигателя при отношении радиуса кривошипа к длине шатуна, равном 1/3,8 по углу поворота коленчатого вала от 0 до 180°, среднее значение величины отношения  равно 0,6729. Следовательно, для получения полезной работы используется 67,29% среднего индикаторного давления, а 32,71% теряется.

У винтошарового двигателя по цилиндрической поверхности ротора 6 винтодуговые желоба выполнены с углом подъема винтовых линий, равным 45°, а средний приведенный тангенс угла равен 0,9469. Для получения полезной работы используется 94,69% среднего индикаторного давления, а теряется 5,31%. В результате среднее эффективное давление увеличивается на 27,4% по отношению к существующим двигателям.

Средняя скорость поршня, определяющая быстроходность двигателя, определена с учетом количества полупериодов движений по отношению

где Z - число полупериодов движений,

S - ход поршня, м,

n - число оборотов ротора, об/мин.

Например, при шести полупериодах движений и 1500 об/мин ротора, а ход поршня 0,1 м, средняя скорость поршня равна 15 м/сек.

Это дает возможность форсировать двигатель по быстроходности.

Работа двигателя

Последовательное взаимодействие цилиндров осуществляется через посредство приводных валов 7 шестерен 32, которые кинематически связаны с шестерней 37, установленной на валу 33 двигателя.

Рабочим процессом является совокупность последовательных и периодически повторяющихся циклов в каждом цилиндре двигателя. Рабочие процессы, совершаемые в течение одного хода поршня /часть рабочего цикла/, называются тактом.

Такты четырехтактного двигателя: 1 - впуск или наполнение, 2 - сжатие, 3 - сгорание и расширение /рабочий ход/, 4 - выпуск газов.

Порядок работы цилиндров за один оборот вала двигателя приведен в таблице 1.

Таблица 1
Цилиндры Первый Второй Третий Четвертый
Такты 1 4 3 2
  2 1 4 3
  3 2 1 4
  4 3 2 1

В момент прямого хода поршня от верхней мертвой точки к нижней мертвой точке ротор проходит путь от нижней точки перегиба к верхней точке перегиба. В момент возвратного хода поршня от нижней мертвой точки к верхней мертвой точке ротор проходит путь от верхней точки перегиба к нижней точке перегиба.

В момент движений ротора шары 17 совместно с сепаратором 18 совершают движения от нижнего положения к верхнему и обратно от верхнего положения к нижнему.

В процессе третьего такта /третий цилиндр/ происходит сгорание и расширение /рабочий ход/ при прямом ходе поршня. В начале такта интенсивно сгорает топливо, поступившее в конце второго такта. Вследствие выделения большого количества тепла температура и давление в цилиндре резко повышаются. Под действием давления происходит перемещение поршня и расширение газов.

Результирующая сила от давления газов на поршень через поршневой шток передается ротору и шарам 17 и равномерно распределяется между шарами, образуя три составляющие силы. Эти составляющие при взаимодействии шаров 17 с винтодуговыми желобами ротора 6 и с желобами упорных вкладышей 19 раскладываются, образуя окружные силы, касательные к делительной окружности профилей желобов ротора.

От расширения газов в цилиндре поршень совершает прямой ход, а ротор - сложные движения, проходит путь от нижней точки перегиба к верхней точке перегиба и одновременно вращение вокруг оси на угол поворота 60°. Вращательное движение от ротора 6 передается через шариковое соединение приводному валу 7. А от приводного вала через посредство шестерни 32, сидящей на приводном валу, шестерне 37, установленной на центральном валу двигателя. Передаточное число шестерен равно 1,5, за это же время центральный вал 33 двигателя повернется на угол 90°.

Аналогичные такты расширения газов последовательно осуществляются и в остальных цилиндрах, а порядок работы цилиндров равен 1-2-3-4.

Таким образом, за один оборот вала двигателя осуществляются четыре такта расширения газов по одному такту в каждом цилиндре.

Маховик 52 является аккумулятором кинетической энергии. Во время тактов расширения газов часть совершаемой в цилиндрах работы полезно используется, часть расходуется на преодоление механических потерь, а остальная часть - избыточная работа расходуется на увеличение кинетической энергии движущихся частей остальных тактов сжатия, впуска и выпуска.

При четырех тактах расширения газов последовательно в четырех цилиндрах за один оборот вала 33 двигателя обеспечиваются меньшие колебания угловой скорости вала, т.е. меньшая степень неравномерности вращения двигателя.

При шестиполупериодном роторе осуществляется шесть ходов поршня, а в цилиндрах осуществляется полтора четырехтактных цикла за один оборот ротора. За это же время вал двигателя сделает полтора оборота.

При четырехполупериодном роторе осуществляется четыре хода поршня, а в цилиндрах осуществится один четырехтактный цикл за один оборот ротора, а вал двигателя сделает один оборот.

Основной характеристикой каждого двигателя является мощность. Мощность винтошарового двигателя определена по аналогичной методике, как и у двигателей с кривошипно-шатунным механизмом, но с учетом показателя тактности данного двигателя.

В числитель соотношения определения мощности двигателя введены величины - ход поршня и число оборотов вала. Но эти величины определяют среднюю скорость поршня С. Заменяя в этом соотношении величины - ход поршня и число оборотов вала на среднюю скорость поршня С и соответственно уточняя число в знаменателе, получим два соотношения в виде равенства

где F - площадь поршня, см2 ,

Pe - среднее эффективное давление, кгс/см 2,

n - число цилиндров.

Во втором соотношении средняя скорость поршня и среднее эффективное давление являются основными величинами, определяющими мощность винтошарового двигателя, а их значения определены выше.

Для сравнения качественной оценки привожу характеристику двигателя Ульяновского завода "Волжские моторы" типа УМЗ-249.10 и двух винтошаровых, которые приведены в таблице №2.

Таблица 2
Наименование УМЗ-249.10 Винтошаровые двигатели
1. Диаметр цилиндра, мм

2. Ход поршня, мм
100 100

92
100

100
92
3. Число цилиндров 4 4 4
4. Степень сжатия 8,8 8,8 8,89
5. Рабочий объем, л 2,89 2,89 3,14
6. Эф. давление, кгс/см2 10,38 14,61 14,61
7. Скорость поршня, м/сек 13,8 13,8 15,0
8. Мощность двигателя, л.с. 150 211 229,5
9. Литровая мощность, л.с./л 51,9 73 73,1
10. Вращение, об/мин 4500 1500 1500
11. Расход топлива г/л.с.ч. 185 131 121

Из приведенной таблицы видно, что при увеличении средней скорости поршня на 1,2 м/сек мощность увеличивается на 18,5 л.с.

На основании термодинамического расчета определено среднее индикаторное давление винтошарового двигателя, величина которого равна Р=15,426 кгс/см2.

Среднее эффективное давление определено по уравнению

Р=15,426×0,9469=14,61 кгс/см2.

Для улучшения экономичности винтошарового двигателя рабочий цикл осуществляется с продолжительным расширением, суть которого заключается в следующем. Номинальную степень сжатия увеличиваем на 1...2 единицы, а чтобы двигатель не детонировал, увеличиваем угол запаздывания закрытия впускного клапана 43. При этом часть заряда выталкивается из цилиндра в начале такта сжатия, в результате чего начало процесса сжатия заряда задерживается, т.е. уменьшается фактическая степень сжатия. Степень же расширения, от которой главным образом зависит экономичность, остается равной номинальной степени сжатия, т.е. большей по сравнению с фактической степенью сжатия.

Чтобы компенсировать уменьшение заряда цилиндра, приходится соответственно увеличивать ход поршня. В данном двигателе увеличение хода поршня незначительно влияет на габариты двигателя.

Применение цикла удлиненного расширения как средство повышения экономичности у винтошаровых двигателей является целесообразным, т.к. снижается удельный расход топлива на 10-12% по сравнению с работой по обычному циклу.

Степень совершенства конструкции винтошарового двигателя объясняется тем, что каждый цилиндр снабжен винтошаровым преобразующим движения механизмом. Одним из основных преимуществ этого механизма является то, что преобразование возвратно-поступательных движений во вращательные движения осуществляется при взаимодействии шаров 17 с винтодуговыми желобами ротора 6 и с желобами упорных вкладышей 19 с минимальными потерями мощности на преодоление трения.

Шариковые соединения качения /направляющие качения/, основными преимуществами которых являются: малое сопротивление движению, независимость этого сопротивления от скорости, незначительная разница между силами трения покоя и движения. Это позволяет обеспечить как быстрые, так и медленные равномерные движения, а также высокую точность установочных положений перемещающихся поршня относительно цилиндра, ротора относительно корпуса двигателя 2 и относительно приводного вала 7.

При точном и прямолинейном движении поршня относительно цилиндра обеспечивается надежная работа цилиндропоршневой группы и увеличивается моторесурс двигателя.

Вариант четырехточечного контакта шаров 17 с винтодуговыми желобами ротора и желобами упорных вкладышей. Профили этих желобов в поперечном сечении /по нормали/ - полуэллипсовидные с дорожками качения по боковым поверхностям, углы контакта равны 45° относительно перпендикуляра к оси ротора 6, проходящего через центр шара 17. Величина такого угла позволяет лучше контролировать размеры, уменьшить контактные напряжения между шарами и желобами при любых рабочих условиях, а в целом увеличивается срок службы механизма. Это подтверждается тем, что в процессе взаимодействия шаров 17 с желобами нагрузка, действующая на каждый шар, равнозначно распределяется на две силы.

Винтошаровые механизмы могут широко применяться и в двухтактных двигателях.

Например, двухтактный двигатель, цилиндры которого снабжены винтошаровыми механизмами, а роторы их имеют шесть полупериодов движений каждый. За один оборот ротора осуществляется три двухтактных рабочих цикла. При четырех цилиндрах диаметром 100 мм и средней скорости поршня, равной 15 м/сек, мощность двигателя будет равна 459 л.с. или 337,5 кВт, а литровая 146,2 л.с./л или 107,5 кВт/л.

Винтошаровые двигатели могут широко применяться на автомашинах, тракторах, танках, вертолетах, судах на подводных крыльях, на передвижных генераторах и в других транспортных средствах и областях техники, где первостепенное значение имеют простота и компактность конструкции, малая масса и минимальная вибрация.

Кроме того, с винтошаровым механизмом могут создаваться поршневые компрессоры и поршневые насосы различной мощности. В этих машинах вращательные движения преобразуются в прямолинейные возвратно-поступательные движения.

Уравнения, определения геометрических размеров, полупериодов движений и диаметров по делительной окружности содержатся в методике расчета винтошаровых двигателей.

Формула изобретения

1. Винтошаровой четырехтактный двигатель, содержащий блок цилиндров с аксиально расположенными цилиндрами, в которых установлены с возможностью возвратно-поступательного движения поршни, головку блока цилиндров, в которой установлены впускные и выпускные клапана, корпус двигателя, в котором установлен механизм преобразования возвратно-поступательных движений поршней во вращательное движение вала, по образующей цилиндра ротора этого механизма выполнены правого и левого направлений дуговые желоба, в этих желобах установлены погруженные наполовину диаметра шарики, а вторые их половины диаметров установлены в сферических отверстиях ползунов, шарики установлены с возможностью взаимодействия с желобами ротора и со сферическими отверстиями ползунов при взаимодействии мелких шариков, а ползуны соединены штоками с поршнями, отличающийся тем, что каждый цилиндр снабжен своим винтошаровым механизмом, преобразующим возвратно-поступательные движения поршня во вращательное движение приводного вала, ротор винтошарового механизма установлен соосно с поршневым штоком и соединен через посредство двухрядного упорного и радиального шарикоподшипников, а с приводным валом соединен шаровым соединением, по образующей цилиндрической поверхности ротора винтошарового механизма выполнены правого и левого направлений винтодуговые желоба с углом наклона винтовых линий на угол  с четным количеством полупериодов движений t, каждый полупериод правого направления последовательно сопряжен с полупериодом левого направления дугами окружностей равной кривизны, полупериоды разделены верхней и нижней точками перегиба, каждая верхняя точка перегиба является верхней мертвой точкой хода поршня, а нижняя точка перегиба является нижней мертвой точкой хода поршня, профили в верхней и нижней точках перегиба выполнены полуэллипсовидными в виде двух боковых дуг окружностей радиусом Rж , касательно сопряженных дугами впадин с углом контакта, равным 45° относительно перпендикуляра к оси ротора, проходящего через центр шара 17, и по развернутой делительной окружности цилиндра ротора на плоскость образованы выпуклыми и вогнутыми дугами окружностей одинаковым по величине радиусом R, которые плавно и касательно сопряжены с винтовыми линиями правого и левого направлений, а расстояние от верхней точки перегиба до нижней точки перегиба равно половине хода поршня 0,5S, профили правого и левого желобов в поперечном сечении дуговые, очерченные радиусом Rжс углом контакта, равным 45° относительно радиальной плоскости, проходящей через центр шара 17, контактные дорожки качения правого и левого желобов выполнены в зависимости от направления движения поршня - прямого хода "П" и возвратного хода "В", в желобах ротора, через полупериод установлены шары, которые размещены в гнездах сепаратора, выполненного в виде кольца, блок цилиндров установлен соосно с корпусом двигателя, а выполненные в корпусе отверстия соосно совмещены с цилиндрами, в каждом отверстии корпуса двигателя на равных расстояниях по окружности выполнены оваловидного профиля пазы, в этих пазах установлены оваловидного профиля упорные вкладыши, на обращенных к ротору поверхностях у этих вкладышей выполнены ответные дуговые желоба с углом контакта, равным 45° относительно радиальной плоскости, проходящей через центр шара осевого направления, шары взаимодействуют с дорожками качения желобов ротора и с дорожками качения упорных вкладышей, выполненных в желобах, по образующей внутреннего отверстия ротора винтошарового механизма выполнены полуэллипсовидного профиля канавки осевого направления, образованные в виде двух боковых дуг окружностей радиусом R ж, касательно сопряженных дугами впадин с углом давления, равным 45° относительно радиальной плоскости, проходящей через центры шариков, ответные полуэллипсовидного профиля канавки выполнены и по образующей поверхности цилиндра приводного вала, в канавках размещены ряды шариков, которые установлены в гнездах сепаратора, выполненного в виде втулки, шарики взаимодействуют с дорожками качения ротора и приводного вала, выполненными на боковых поверхностях канавок у ротора и у приводного вала, по образующей поверхности цилиндра поршневого штока выполнены полуэллипсовидного профиля канавки, образованные в виде двух дуг окружностей радиусом Rж, касательно сопряженных дугами впадин с углом давления, равным 45° относительно радиальной плоскости, проходящей через центры шариков с дорожками качения на боковых поверхностях, ответные полуэллипсовидного профиля канавки выполнены и в отверстии направляющей втулки штока, в канавках поршневого штока и направляющей втулки штока установлены ряды шариков, которые установлены в гнездах сепаратора, выполненного в виде втулки, шарики взаимодействуют с дорожками качения поршневого штока и направляющей втулки, которые выполнены на боковых поверхностях канавок направляющей втулки, приводные валы винтошаровых механизмов шестернями соединены с шестерной вала двигателя.

2. Двигатель по п.1, отличающийся тем, что по цилиндрической поверхности ротора винтошарового механизма выполнены желоба, содержащие шесть полупериодов движений t, в которых размещены три шара 17, а в отверстии корпуса двигателя установлены три упорных вкладыша, при этом за один оборот ротора осуществляется полтора четырехтактных цикла или три четырехтактных цикла за два оборота ротора.

3. Двигатель по п.1, отличающийся тем, что по цилиндрической поверхности ротора винтошарового механизма на поверхностях, обращенных к ротору упорных вкладышах, выполнены желоба полуэллиптического профиля в виде двух боковых дуг окружностей радиусом R ж, касательно сопряженных дугами впадин с углом контакта, равным 45° относительно перпендикуляра к оси ротора, проходящего через центр шара 17, при этом шары 17 взаимодействуют с желобами, осуществляя контакт на четыре точки.

Имя изобретателя: Мозоров Сергей Дмитриевич
Имя патентообладателя: Мозоров Сергей Дмитриевич
Почтовый адрес для переписки: 193318, Санкт-Петербург, ул. Белышева, 8, корп.1, кв.488, С.Д. Мозорову
Дата начала отсчета действия патента: 27.04.2007

Разместил статью: admin
Дата публикации:  20-02-2009, 22:22

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Бескривошипный двигатель внутреннего сгорания
Изобретение относится к двигателестроению и может быть использовано в качестве источника механической энергии. Техническим результатом является повышение надежности работы двигателя. Сущность изобретения заключается в том, что двигатель содержит цилиндр, гильзу и поршень, связанный с цилиндром при помощи тел вращения, входящих в сочленение с криволинейными бесконечными пазами. Согласно изобретению, на наружной поверхности поршня выполнено n криволинейных бесконечных замкнутых пазов, каждый из...

Бескривошипный двигатель внутреннего сгорания
Изобретение может быть использовано в двигателестроении. Бескривошипный двигатель внутреннего сгорания содержит цилиндр, гильзу и поршень, связанный с цилиндром при помощи тел вращения, входящих в сочленение с криволинейным бесконечным пазом, выполненным на наружной поверхности поршня. На выходном валу установлена пружина, имеющая предварительное сжатие. Один конец пружины опирается на буртик выходного вала, а другой - на нижний торец юбки поршня. Технический результат заключается в уменьшении...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: магнит или могнит?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Топливный корректор

Топливный корректор Изобретение относится к двигателестроению, в частности к устройствам для ультразвуковой и магнитной активации углеводородных сред, и может быть…
читать статью
Двигатели внутреннего сгорания, Нестандартные решения в движителях и двигателях
Роторная машина

Роторная машина Сущность изобретения: роторная машина, преимущественно двигатель внутреннего сгорания, содержит полый корпус с установленными в его полости ведомыми…
читать статью
Двигатели внутреннего сгорания
Система кассетных энергоустановок

Система кассетных энергоустановок Изобретение относится к двигателестроению, в частности к комбинациям двух или более двигателей внутреннего сгорания. Изобретение позволяет повысить…
читать статью
Двигатели внутреннего сгорания
Устройство для обработки топливовоздушной смеси

Устройство для обработки топливовоздушной смеси Использование: двигателестроение. Сущность изобретения: в рабочей камере устройства и соосно с ней размещен вал, на котором с помощью упругих…
читать статью
Двигатели внутреннего сгорания
Бескривошипный двигатель внутреннего сгорания

Бескривошипный двигатель внутреннего сгорания Изобретение относится к двигателестроению и может быть использовано в качестве источника механической энергии. Техническим результатом является…
читать статью
Двигатели внутреннего сгорания, Нестандартные решения в движителях и двигателях
Двухвинтовой роторно-поршневой двигатель внутреннего сгорания

Двухвинтовой роторно-поршневой двигатель внутреннего сгорания Изобретение относится к двигателям и может использоваться как привод к автомобилям и другим транспортным средствам. В цилиндрических расточках…
читать статью
Двигатели внутреннего сгорания
Способ внутренней очистки выхлопных газов двигателя внутреннего сгорания

Способ внутренней очистки выхлопных газов двигателя внутреннего сгорания Ноу-хау разработки, а именно данное изобретение автора относится к двигателестроению, в частности к автотранспорту, и может найти широкое применение…
читать статью
Изобретения Дудышева, Двигатели внутреннего сгорания
Генератор для любых отраслях деятельности человека для получения энергии

Генератор для любых отраслях деятельности человека для получения энергии Ноу-хау разработки, а именно данное изобретение автора относится к генераторам и может использоваться в транспорте как двигатель внутреннего сгорания…
читать статью
Двигатели внутреннего сгорания
Роторно-поршневой двигатель внутреннего сгорания с воздушным охлаждением

Роторно-поршневой двигатель внутреннего сгорания с воздушным охлаждением Изобретение относится к двигателестроению, а именно к конструкциям роторно-поршневых двигателей внутреннего сгорания, и может использоваться в…
читать статью
Двигатели внутреннего сгорания
Свободнопоршневой двигатель

Свободнопоршневой двигатель Изобретение относится к энергомашиностроению, в частности к свободнопоршневым двигателям внутреннего сгорания, и позволяет расширить область…
читать статью
Двигатели внутреннего сгорания
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
pi31453_53
Публикаций: 9
Комментариев: 0
Romm
Публикаций: 0
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Parkerbig
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
Mavavto
Публикаций: 0
Комментариев: 0
AllenCeash
Публикаций: 0
Комментариев: 0
kapriolree
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru