Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Роторный двигатель внутреннего сгорания
Изобретения Российской Федерации » Двигатели и движители » Двигатели внутреннего сгорания
Роторный двигатель внутреннего сгорания Использование: двигателестроение. Сущность изобретения: камера сгорания 8 через воздушный редуктор 10 сообщена с автономным источником 9 сжатого воздуха. Зев камеры сгорания полностью перекрывается частью 6 поверхности ротора 4. Отсекатель 16 установлен на корпусе 1 и подпружинен к ротору. ...
читать полностью


» Изобретения Российской Федерации » Двигатели и движители » Двигатели внутреннего сгорания
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
0
Добавить эту страницу в свои закладки на сайте »

Роторная машина


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2013589

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к машинам объемного расширения и сжатия, в частности, к роторым двигателям внутреннего сгорания, роторным расширительным машинам (объемным турбинам), и роторным компрессорам, имеющим рабочие камеры с бесконтактными уплотнениями.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известен роторный компрессор, содержащий корпус с внутренней полостью, в котором на эксцентриковом валу установлен трехгранный ротор, выступы которого сопряжены с корпусом с минимальными зазорами, образующими бесконтактные уплотнения. Внутренняя поверхность корпуса в компрессоре имеет лабиринтную структуру из ряда продольных канавок, предназначенную для повышения гидравлического сопротивления зазоров в бесконтактных уплотнениях, снижения таким путем утечек в бесконтактных уплотнениях и повышения объемного КПД. Однако достичь поставленной цели в известном устройстве нельзя, поскольку лабиринтная структура выполнена на спутной поверхности, т. е. на такой поверхности, которая в процессе работы компрессора перемещается относительно щелей в бесконтактных уплотнениях из уплотняемой камеры в направлении струй утечек. Поскольку движение утечек и лабиринтных поверхностей спутно, т. е. совпадает по направлению, лабиринтная структура, ячейки которой имеют значительный объем и заполнены сжатым воздухом с избыточным давлением, движется относительно уплотнений из камеры с повышенным давлением в камеру с низким давлением и, подобно транспортеру, переносит рабочее тело с высокими параметрами (давлением и плотностью) обратно в камеру всасывания. Этот перенос ухудшает экономичность компрессора.

Известен роторный двигатель внутреннего сгорания, содержащий корпус с рабочей полостью, образованной двумя пересекающимися цилиндрическими поверхностями, ведущий ротор и ведомый ротор с расположенной в нем камерой сгорания (а. с. N 1325174, кл. F 02 B 53/00). Поверхности рабочей полости в этом двигателе выполнены относительно гладкими, без лабиринтных элементов, а бесконтактные уплотнения имеют вид эквидистантных щелей большого удлинения, обладающих значительным гидравлическим сопротивлением. Такое исполнение позволяет повысить объемный к. п. д. в камере сжатия двигателя, где преобладают спутные поверхности; этот полезный эффект обеспечен отсутствием переноса рабочего тела лабиринтной структурой. Бесконтактные уплотнения в виде эквидистантных щелей обладают удовлетворительной эффективностью и в процессе расширения, поскольку обеспечивают снижение потерь от утечек до 8% , но указанная величина достаточно существенна, чтобы предпринять поиск новых решений для ее дальнейшего снижения.

Цель изобретения - повышение эффективности КПД роторной машины путем снижения утечек рабочего тела в бесконтактных уплотнениях.

Эта цель достигается благодаря особому дифференцированному исполнению бесконтактных уплотнений, которое заключается в выполнении спутных поверхностей относительно гладкими, а противоточных поверхностей - с лабиринтной структурой.

В результате анализа газодинамических процессов в лабиринтных уплотнениях с указанными особенностями исполнения был обнаружен эффект реверсирования утечек обратно в камеру с высоким давлением. Использование эффекта реверсирования позволяет создать бесконтактные уплотнения, обладающие уникальным свойством - полным устранением утечек.

rnrnrnrnrnrnrnrnrn

На фиг. 1 изображена роторная машина (двигатель), поперечный разрез; на фиг. 2 - Роторная машина, узел I на фиг. 1; на фиг. 3 - Роторная машина, узел II на фиг. 1; на фиг. 4 - Роторная машина, вид по стрелке А на фиг. 3.

Роторная машинаРоторная машина

Роторная машина содержит корпус 1 с двумя торцовыми крышками 2, в которых на подшипниках установлены ведущий ротор 3 и ведомый ротор 4, связанные между собой синхронизирующей передачей из трех шестерен, обеспечивающей вращение роторов в одном направлении с равной угловой скоростью (синхронизирующая передача не показана). В обеих торцовых крышках 2 выполнены впускные окна 5, сообщающиеся с впускными патрубками, в цилиндрической стенке корпуса имеется выпускное окно 6, соединенное с выпускным патрубком 7. Ведущий ротор имеет выступ 8 с цилиндрической площадкой 9 на вершине, сопряженной с минимальным зазором с внутренней цилиндрической расточкой корпуса. Выступ имеет переднюю 10 и заднюю (относительно направления вращения ротора) 11 стороны, сопряженные между собой соосной ротору цилиндрической поверхностью 12. Ведомый ротор выполнен с внешней цилиндрической поверхностью 13 и серповидной впадиной 14, взаимодействующей с площадкой 9 ведущего ротора; внутри ведомого ротора выполнена камера сгорания 15 и установлена топливная форсунка 16. Впускные и выпускные окна камеры сгорания разнесены по длине ротора, причем в фазе, соответствующей фиг. 1, впускные окна 36 сообщены с двумя перепускными каналами 37, выполненными в корпусе. По линиям пересечения серповидной камеры с внешней цилиндрической поверхностью расположены передняя уплотнительная кромка 17, взаимодействующая с задней стороной 11 выступа ведущего ротора, и задняя уплотнительная кромка 18, сопряженная при работе машины с передней стороной 10 выступа ведущего ротора. Все сопряженные поверхности роторов образованы дугами окружностей, уплотнительные кромки 17 и 18 тоже выполнены с небольшим радиусом (r  1-3 мм). Взаимное расположение корпуса и роторов создает камеру сжатия 19 и камеру расширения 20, ограниченную линиями сопряжения рабочих органов в точке 21 на выступе ведущего ротора, в точке 22 на линии пересечения двух расточек корпуса и в точке 23 между ведущим и ведомым роторами. Корпус, торцовые крышки и роторы выполнены из жаропрочных материалов. На поверхности расточек корпуса и торцовых крышек, ограничивающих камеры расширения и сжатия, нанесены мягкие износные покрытия, например, на основе графита и металлокерамики, применяемые для аналогичных целей в газовых турбинах. На заднюю сторону 11 выступа ведущего ротора, на сопряженную с ней часть цилиндрической поверхности 12 и на примыкающую к передней уплотнительной кромки часть поверхности 13 нанесено термобарьерное покрытие, например двух- или трехслойное, наружный слой которого выполнен из окиси циркония ZrO2, стабилизированной 12% Y2O3 + 3% MgO, ThO2, CaO, или эмаль типа ЭВ-55А. на подвижных относительно камеры расширения 20 поверхностях, перемещающихся в процессе работы из полости низкого давления в полость высокого давления (в камеру 20), т. е. на ограничивающих камеру расширения цилиндрических и торцовых поверхностях корпуса, на задней поверхности 11 выступа ведущего ротора 8, на части 24 цилиндрической поверхности 12, примыкающей к поверхности 11, и на части 25 внешней цилиндрической поверхности 13 ведомого ротора выполнена ячеистая структура с ячейками 26, имеющих глубину h1, и ячейками 27 с глубиной h2, образующая лабиринтные уплотнения. Ячейки лабиринтных уплотнений могут быть выполнены различными технологическими приемами, применяемыми, в частности, для изготовления охлаждающих отверстий в лопатках газовых турбин, например, электроискровым способом, фотоотравлением, лучом импульсного лазера или электронным пучком. Утечки рабочего тела в этих лабиринтных уплотнениях и геометрические параметры уплотнения должны удовлетворять определенным соотношениям:
Qm ≈nяmя; Qm≈Vяρnя;
Qm≈Sяh1 Kv, где Qm - массовый расход рабочего тела через лабиринтные уплотнения за единицу времени;
nя - число ячеек, переместившихся в камеру расширения за то же время;
mя - масса рабочего тела в одной ячейке;
Vя - объем одной ячейки;
ρ - плотность рабочего тела в ячейках, поступающих в камеру;
Sя - площадь лабиринтной поверхности, поступающей в камеру за единицу времени;
h1 - высота ячеек;
Кv - коэффициент пористости ячеистой структуры, являющийся отношением суммарного объема ячеек (пор) на поверхности к объему поверхностного слоя глубиной h1.

Роторная машина, узел IРоторная машина, узел I

В точке 23 между роторами сопряжены две поверхности, из которых поверхность 24 ведущего ротора в процессе расширения рабочего тела перемещается в камеру расширения, а поверхность 25 перемещается из камеры. Этому варианту соответствует соотношение:

Qm + Sя h1ρ≈Sя1h2ρKv , где Sя, h1, ρ, Кv - параметры поверхности 25, а Sя1, h2, Кv1 - параметры поверхности 24.

Это соотношение обеспечивается большей удельной емкостью (объемом на единицу площади) полостей лабиринта поверхности 24, что достигается увеличением глубины (h2) или коэффициента пористости К. Знак < обусловлен дополнительным переносом рабочего тела из смежной камеры с низким давлением.

Изображенные на чертежах размеры лабиринтных ячеек увеличены; их глубина h1, удовлетворяющая приведенным выше зависимостям, варьируется в пределах 0,1-0,6 мм.

Кроме указанных мест, лабиринтные уплотнения выполняются также на торцовых поверхностях крышек 2 и на площадке 9 ведущего ротора, а также, по меньшей мере, на части 28 цилиндрической поверхности корпуса; другая часть этой поверхности, примыкающая к точке 22, может быть выполнена или с гладкими износными покрытиями, или с лабиринтной структурой.

Роторная машина, узел IIРоторная машина, узел II

Задняя поверхность 11 выступа ведущего ротора тоже может иметь участки с гладкой поверхностью (без лабиринтной структуры). Например, участок этой поверхности напротив выпускного окна камеры сгорания для снижения теплонапряженности и газовой эрозии целесообразно выполнить гладким. Кроме круглой в плане (фиг. 3) формы ячеек, возможны шестигранная, квадратная и треугольная, обладающие более высоким гидравлическим сопротивлением. Часть лабиринтных уплотнений, например, расположенных на поверхностях 9, 11, 24, может быть выполнена с растровой (линейной) структурой в виде параллельных микроканавок. Радиусная поверхность уплотнительного выступа 18 тоже исполняется с лабиринтными уплотнениями с шагом между ними примерно 0,2. . . 0,3 мм, благодаря этому на пути утечек располагаются 4. . . 5 последовательно расположенных гребешков, снижающих утечки в 2 раза. При шлифовке цилиндрических поверхностей последний проход шлифовального круга осуществляется с направлением движения круга вдоль образующей, благодаря чему воспроизводится микрорельеф, создающий дополнительное сопротивление утечки. На плоских торцевых поверхностях роторов и корпуса дополнительное сопротивление утечкам можно обеспечить пескоструйной обработкой.

rnrnrnrnrnrnrnrnrn

Действует двигатель подобно прототипу. При синхронном вращении роторов в одном направлении (на чертежах - против часовой стрелки) в камере 19 после ее продувки воздухом через впускные окна 5 осуществляется сжатие и вытеснение заряда в полость камеры сгорания 15, где через форсунку 16 осуществляется впрыск топлива, воспламенение и сгорание смеси, затем камера сгорания открывается в камеру расширения 20. По окончании процесса расширения продукты сгорания выпускаются в патрубок 7.

Роторная машина, вид по стрелке АРоторная машина, вид по стрелке А

В начальной стадии процесса расширения ряд поверхностей с лабиринтной структурой перемещаются относительно крайних точек 21, 22 и сопряжения II камеры расширения в направлении извне внутрь камеры, т. е. из полостей с относительно низким давлением в полости с высоким давлением рабочего тела. Конкретно, поверхность 29 перемещается в камеру расширения относительно кромки 21 ведущего ротора. Торцовые поверхности движутся в камеру относительно задней поверхности 11 ведущего ротора, лабиринтная поверхность 24 перемещается в камеру относительно сопряжения II между роторами, а поверхность 25 поступает (в начальной фазе расширения) в камеру относительно кромки 22 корпуса. Утечки продуктов сгорания в указанных бесконтактных сопряжениях сопровождаются чрезвычайно полезным явлением - реверсированием утечек, т. е. их переносом обратно в камеру расширения. Достаточно наглядно реверс-эффект иллюстрируется на фиг. 2, где кривой 30 изображено падение давления в ячейках лабиринта в направлении потока газа на длине l, кривая 31 представляет эпюру скоростей потока утечек рабочего тела, а кривая 32 является эпюрой скоростей возвратного потока газа. Продукты сгорания находятся в камере расширения 20 под избыточным давлением, через зазор h в бесконтактном уплотнении перетекают в смежную камеру с меньшим давлением, при этом происходит многократное дросселирование газа и дискретное (ступенчатое падение давления последовательно на пути струи газа. Поскольку поверхность с ячейками 26 при этом перемещается внутрь камеры, элементарные объемы ячеек последовательно наполняются продуктами сгорания с возрастающим давлением и переносятся обратно в камеру расширения (кривая 32). Если соблюдены приведенные выше соотношения, определяющие равенство расхода утечек и бесконтактных уплотнений и их возврата обратно в камеру расширения, бесконтактное уплотнение становится практически безрасходным. Расход рабочего тела с утечками мало зависит от числа оборотов, реверс утечек, напротив, находится в прямой зависимости от частоты вращения, поэтому условия безрасходности лабиринтного уплотнения должны быть обеспечены при минимальных рабочих скоростях вращения. С увеличением частоты вращения уплотнение саморегулируется: увеличение реверса утечек компенсируется увеличением расхода путем автоматического сокращения активной длины l уплотнения и числа последовательно расположенных вдоль потока газа ячеек.

Более сложная ситуация изображена на фиг. 3, где ячейки лабиринтной спутной поверхности 25 перемещаются из камеры и создают дополнительный расход рабочего тела. Исполнение лабиринтной структуры на поверхности 25 целесообразно, поскольку в начальной стадии процесса расширения эта поверхность перемещается относительно кромки 22 внутрь камеры, т. е. является противоточной и обеспечивает реверс утечек продуктов сгорания с высокими параметрами. Для устранения утечек за завершающей стадии процесса расширения сопряжения с поверхностью 25 лабиринтная структура 24 имеет ячейки 27 с увеличенным объемом благодаря большей глубины (h2  2h1). Вследствие большей емкости возврат утечек (вектор 33) поверхностью 24 компенсирует их расход через зазор (вектор 34) и унос ячейками поверхности 25 (вектор 35), т. е. поверхность 25 в этой фазе по сравнению с поверхностью 24 становится относительно гладкой.

Таким образом, действие безрасходных лабиринтных уплотнений сопровождается появлением в них сплющенного вихря с интенсивной циркуляцией. Устранение утечек не означает исключения энергетических потерь вообще, т. к. дросселирование (мятие) рабочего тела всегда сопровождается ростом энтропии. Однако потери на дросселирование примерно в 12 раз меньше потерь, обусловленных утечками в обычных лабиринтных уплотнениях. Это обстоятельство обусловливает высокую технико-экономическую эффективность предложенного технического решения.

Лабиринтные уплотнения на поверхности 9,28, на торцах ведущего ротора тоже способствуют снижению утечек и повышению к. п. д. двигателя, но они применены по прямому назначению, т. е. не обладают новым свойством реверсирования утечек и предметом притязания настоящего патента не является. Поверхности 10 и 12 ведущего ротора, поверхности корпуса, ограничивающие камеру сжатия, часть внешней цилиндрической поверхности ведомого ротора, примыкающая к уплотнительной кромке 18, выполнены гладкими, поскольку исполнение их с лабиринтной структурой не снижает, а напротив, увеличивает утечки, т. к. эти поверхности в процессе сжатия перемещаются относительно камеры сжатия в направлении утечек и увеличивают их расход.

Область применения предложения не ограничивается роторной машиной (фиг. 1), оно может быть эффективно использовано в машинах объемного сжатия других конструктивных схем.

Формула изобретения

РОТОРНАЯ МАШИНА, преимущественно двигатель внутреннего сгорания, содержащая полый корпус с ведомым и ведущим роторами, камерами сжатия и расширения, ограниченными цилиндрическими поверхностями полости корпуса, ведомого и ведущего роторов, и лабиринтные уплотнения рабочих камер, отличающаяся тем, что, с целью повышения экономичности путем повышения эффективности уплотнений, поверхности полости корпуса и часть ведущего ротора камеры сжатия, а также задняя по ходу вращения часть внешней цилиндрической поверхности ведомого ротора выполнены гладкими, а поверхности полости корпуса и часть ведущего ротора камеры расширения, а также передняя по ходу вращения часть внешней цилиндрической поверхности ведомого ротора имеют структуру из элементов лабиринтных уплотнений.

Имя изобретателя: Владимиров Порфирий Сергеевич
Имя патентообладателя: Владимиров Порфирий Сергеевич
Дата начала отсчета действия патента: 04.04.1988

Разместил статью: admin
Дата публикации:  17-02-2003, 11:03

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Фомин Дмитрий Владимирович

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Способ работы двигателя внутреннего сгорания
Изобретение относится к области машиностроения, в частности к двигателестроению, а именно к способам работы двигателя внутреннего сгорания. Способ работы двигателя внутреннего сгорания, включающий впуск в цилиндр воздуха, сжатие его, впрыскивание топлива во второй половине такта сжатия, воспламенение топлива от сжатия, сгорание его, расширение и выпуск продуктов сгорания, при этом в горящее топливо впрыскивается вода, предварительно подогретая отработавшими продуктами сгорания, причем масса...

Роторно-поршневой двигатель внутреннего сгорания
Изобретение относится к двигателестроению, а именно к роторно-поршневым двигателям внутреннего сгорания с неравномерным движением поршней. Техническим результатом является повышение надежности и экономичности за счет обеспечения изохорного сгорания в камере двигателя. Сущность изобретения: двигатель содержит круглый корпус с расположенными в нем четырьмя лопастями-поршнями, которые закреплены попарно со смещением на 180o на несущих дисках, установленных с возможностью вращения так, что они...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: пары или поры?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Двигатели и движители
    • Двигатели внутреннего сгорания
    • Нестандартные решения в движителях и двигателях
  • Досуг и развлечения
    • Аттракционы
    • Музыкальные инструменты
  • Деревообрабатывающая промышленность
    • Деревообрабатывающее оборудование
  • Извлечение цветных и редкоземельных металлов
    • Извлечение цветных не благородной группы металлов
    • Благородных и редкоземельных металлов
  • Летающие аппараты
  • Металлургия
    • Технологии плавки и сплавы
  • Мебель и мебельная фурнитура
  • Медицина
    • Аллергология
    • Акушерство, гинекология, сексология и сексопатолог
    • Анестезиология
    • Вирусология, паразитология и инфектология
    • Гигиена и санитария
    • Гастроэнтерология, гепатология и панкреатология
    • Гематология
    • Дерматология и дерматовенерология
    • Иммунология и вирусология
    • Кардиохирургия и кардиология
    • Косметология и парикмахерское искусство
    • Медицинская техника
      • Тренажеры
    • Наркология
    • Неврология, невропатология и неонатология
    • Нетрадиционная медицина
    • Онкология и радиология
    • Офтальмология
    • Оториноларингология
    • Психиатрия
    • Педиатрия и неонатология
    • Стоматология
    • Спортивная медицина и физкультура
    • Травматология, артрология, вертебрология, ортопеди
    • Терапия и диагностика
    • Урология
    • Фтизиатрия и пульмонология
    • Фармацевтика
    • Хирургия
    • Эндокринология
  • Насосное и компрессорное оборудование
  • Очистка воздуха и газов
    • Кондиционирование и вентиляция воздуха
  • Пчеловодство
  • Подъёмные устройства и оборудование
  • Подшипники
  • Получение и обработка топлива
    • Твердое топливо
    • Бензин и дизельное топливо
    • Обработка моторных топлив
  • Растениеводство
    • Садовый и огородный инструмент
    • Методики и способы выращивания
  • Роботизированная техника
  • Судостроение
  • Стройиндустрия
    • Строительные технологии
    • Леса, стремянки, лестницы
    • Сантехника, канализация, водопровод
    • Бетон
    • Лакокрасочные, клеевые составы и композиции
    • Ограждающие элементы зданий и сооружений
    • Окна и двери
    • Отделочные материалы
    • Покрытия зданий и сооружений
    • Строительные материалы
    • Специальные строительные смеси и композиции
    • Техника, инструмент и оборудование
    • Устройство покрытий полов
  • Средства индивидуальной защиты
  • Спортивное и охотничье снаряжение
  • Транспортное машиностроение
    • Автомобильные шины, ремонт и изготовление
  • Тепловая энергия
    • Нетрадиционная теплоэнергетика
    • Солнечные, ветровые, геотермальные теплогенераторы
    • Теплогенераторы для жидких сред
    • Теплогенераторы для газообразных сред
  • Технология сварки и сварочное оборудование
  • Устройства и способы водоочистки
    • Обработка воды
    • Опреснительные установки
  • Устройства и способы переработки и утилизации
    • Утилизации бытовых и промышленных отходов
  • Устройства и способы получения водорода и кислород
    • Способы получения и хранения биогаза
  • Удовлетворение потребностей человека
  • Холодильная и криогенная техника
  • Художественно-декоративное производство
  • Электроника и электротехника
    • Вычислительная техника
    • Проводниковые и сверхпроводниковые изделия
    • Устройства охраны и сигнализации
    • Осветительная арматура и оборудование
    • Измерительная техника
    • Металлоискатели и металлодетекторы
    • Системы защиты
    • Телекоммуникация и связь
      • Антенные системы
    • Электронные компоненты
    • Магниты и электромагниты
    • Электроакустика
    • Электрические машины
      • Электродвигатели постоянного и переменного тока
        • Управление и защита электродвигателей
  • Электроэнергетика
    • Альтернативные источники энергии
      • Геотермальные, волновые и гидроэлектростанции
      • Солнечная энергетика
      • Ветроэлектростанции
    • Электростанции и электрогенераторы
    • Использование электрической энергии
    • Химические источники тока
    • Термоэлектрические источники тока
    • Нетрадиционные источники энергии
⇩ Интересное ⇩
Двигатель внутреннего сгорания

Двигатель внутреннего сгорания Изобретение относится к четырехтактным двигателям внутреннего сгорания. Техническим результатом является повышение пусковых качеств двигателя…
читать статью
Двигатели внутреннего сгорания
Способ работы двигателя внутреннего сгорания

Способ работы двигателя внутреннего сгорания Изобретение относится к области машиностроения, в частности к двигателестроению, а именно к способам работы двигателя внутреннего сгорания. Способ…
читать статью
Двигатели внутреннего сгорания
Способ внутренней очистки выхлопных газов двигателя внутреннего сгорания

Способ внутренней очистки выхлопных газов двигателя внутреннего сгорания Ноу-хау разработки, а именно данное изобретение автора относится к двигателестроению, в частности к автотранспорту, и может найти широкое применение…
читать статью
Изобретения Дудышева, Двигатели внутреннего сгорания
Способ работы двигателя внутреннего сгорания

Способ работы двигателя внутреннего сгорания Изобретение относится к способам работы двигателя внутреннего сгорания (ДВС) с искровым зажиганием. В двигателе, работающем на углеводородном…
читать статью
Двигатели внутреннего сгорания, Нестандартные решения в движителях и двигателях
Водородно-кислородная энергетическая установка транспортного средства

Водородно-кислородная энергетическая установка транспортного средства Изобретение относится к энергетическим установкам, предназначенным для получения горючей газовой смеси из жидкости с последующим сжиганием в…
читать статью
Двигатели внутреннего сгорания, Нестандартные решения в движителях и двигателях
Роторный двигатель внутреннего сгорания увеличенной долговечности и мощности

Роторный двигатель внутреннего сгорания увеличенной долговечности и мощности Использование: двигателестроение, в частности роторные двигатели внутреннего сгорания. Сущность изобретения: роторный двигатель содержит корпус с…
читать статью
Двигатели внутреннего сгорания
Устройство магнитной обработки топлива для карбюраторных двигателей

Устройство магнитной обработки топлива для карбюраторных двигателей Изобретение относится к машиностроению, а именно к устройствам для магнитной обработки топлива. Изобретение обеспечивает упрощение конструкции и…
читать статью
Двигатели внутреннего сгорания, Нестандартные решения в движителях и двигателях
Устройство для обработки топливовоздушной смеси

Устройство для обработки топливовоздушной смеси Использование: двигателестроение. Сущность изобретения: в рабочей камере устройства и соосно с ней размещен вал, на котором с помощью упругих…
читать статью
Двигатели внутреннего сгорания
Двигатель внутреннего сгорания

Двигатель внутреннего сгорания Использование: в автономных машинах и транспортных средствах преимущественно в автомобилях, тракторах и легкомоторной авиации.Сущность изобретения: в…
читать статью
Двигатели внутреннего сгорания
Устройство для обработки жидкости

Устройство для обработки жидкости Изобретение относится к двигателестроению, в частности к устройствам, предназначенным для комплексной обработки жидких сред путем одновременного…
читать статью
Обработка моторных топлив, Двигатели внутреннего сгорания
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
pi31453_53
Публикаций: 9
Комментариев: 0
Romm
Публикаций: 0
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Parkerbig
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
Mavavto
Публикаций: 0
Комментариев: 0
AllenCeash
Публикаций: 0
Комментариев: 0
kapriolree
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru