Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Электрошокер
Изобретения Российской Федерации » Средства индивидуальной защиты
Электрошокер Изобретение относится к средствам индивидуальной защиты, в частности к электрошокерам. Электрошокер содержит корпус, внутри которого жестко закреплен источник высокого импульсного напряжения, электрически соединенный с полыми рабочими электродами, связанный с помощью диэлектрических труб с выходом насоса, вход которого с помощью диэлектрических труб соединен с резервуаром для электропроводящей жидкости, при этом рабочие электроды выполнены выступающими из корпуса на разную длину, которая...
читать полностью


» Инвестиции в инновации » Инновационные решения в топливной энергетике
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
0
Добавить эту страницу в свои закладки на сайте »

Способ измерения глубины трещины электропотенциальным методом


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Заявка на изобретение RU2013111993/28, 19.03.2013

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2527311

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к неразрушающему контролю и может быть использовано для измерения глубины поверхностных трещин.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известен способ измерения глубины поверхностных трещин электропотенциальным методом, заключающийся в том, что электропотенциальный преобразователь, состоящий из размещенных на одной линии симметрично относительно центра двух токовых электродов и расположенных между ними симметрично относительно центра двух потенциальных электродов, устанавливают на бездефектном участке контролируемого объекта, пропускают через него электрический ток I и измеряют напряжение U0 между потенциальными электродами, затем устанавливают электроды электропотенциального преобразователя на линии, перпендикулярной к следу трещины на поверхности, симметрично относительно него, пропускают электрический ток I и измеряют напряжение Ur между потенциальными электродами, вычисляют относительное изменение напряжения (Ur-U0)/U0 на дефектном участке и по нему судят о глубине h поверхностной трещины, используя зависимости h=h[(Ur-U0)/U0], предварительно полученные для плоских образцов с трещинами известной глубины [1].

 

 

Известный способ не позволяет достоверно оценивать глубину поверхностных трещин на цилиндрических вогнутых и выпуклых поверхностях, так как трещины одинаковой глубины дают различные значения (Ur-U0)/U0 при изменении кривизны поверхности.

rnrnrnrnrnrnrnrnrn

Наиболее близок к предложенному принятый за прототип способ измерения глубины трещины электропотенциальным методом на участках с цилиндрической формой поверхности, заключающийся в том, что измеряют кривизну поверхности на контролируемом участке с трещиной, устанавливают на нем симметрично относительно трещины электропотенциальный преобразователь, состоящий из размещенных на одной линии двух токовых и двух потенциальных электродов, создают с помощью токовых электродов ток по линии, перпендикулярной к следу трещины на поверхности, измеряют напряжение Ur между потенциальными электродами, выбирают бездефектный участок контролируемого объекта, имеющий такую же кривизну поверхности, что и на контролируемом участке с трещиной, устанавливают на выбранном участке электропотенциальный преобразователь с ориентацией, соответствующей его ориентации при установке на участке с трещиной, измеряют напряжение U 0 между потенциальными электродами, вычисляют относительное изменение напряжения (Ur-U0)/U0 на дефектном участке и по нему судят о глубине h поверхностной трещины, используя зависимости h=h(Ur-U0 )/U0, предварительно полученные для образцов с такой же кривизной поверхности, что и на контролируемом участке и с трещинами известной глубины и соответствующей ориентацией [2].

Недостаток известного способа - повышенная трудоемкость, связанная с необходимостью измерения кривизны поверхности с помощью дополнительных измерительных средств. Это особенно неудобно при измерении глубины трещин в объектах с переменной кривизной поверхности, например, на поверхности лопаток паровых турбин.

Цель изобретения - снижение трудоемкости измерений.

Поставленная цель в способе измерения глубины трещины электропотенциальным методом на участках с цилиндрической формой поверхности, заключающемся в том, что устанавливают на участке с трещиной электропотенциальный преобразователь, состоящий из двух токовых и двух потенциальных электродов по линии, перпендикулярной к следу трещины на поверхности, симметрично относительно него, пропускают электрический ток I и измеряют напряжение Ur между потенциальными электродами, выбирают бездефектный участок контролируемого объекта, имеющий такую же форму поверхности, что и на контролируемом участке с трещиной, устанавливают электропотенциальный преобразователь на выбранном участке с ориентацией, соответствующей ориентации на участке с трещиной, измеряют напряжение U01 между потенциальными электродами, вычисляют относительное изменение напряжения (Ur-U01)/U01 на дефектном участке и используют его для определения глубины трещины, отличающийся тем, что повторно устанавливают электропотенциальный преобразователь на бездефектном участке в направлении ортогональном первой установке, измеряют напряжение U02 между потенциальными электродами, а о глубине трещины судят по относительному изменению напряжения (Ur-U01)/U01 на дефектном участке и отношению U01/U02, используя градуировочные зависимости h=h[(Ur-U01)/U01 , U01/U02], предварительно полученным для цилиндрических объектов с различной кривизной поверхности и с трещинами известной глубины.

На фиг.1 приведена схема контроля для реализации заявляемого способа применительно к измерению глубины продольной трещины.

На фиг.2 приведена зависимость отношения напряжений U01 и U 02, полученных при установке электропотенциального преобразователя, соответственно, вдоль и поперек оси цилиндрических объектов с различной кривизной поверхности.

На фиг.3 приведены градуировочные зависимости h=h[(Ur-U01)/U 01, U01/U02], предварительно полученные для цилиндрических объектов с различной кривизной поверхности и с продольными трещинами известной глубины h.

На фиг.4 приведена схема контроля для реализации заявляемого способа применительно к измерению глубины поперечной трещины.

На фиг.5 приведены градуировочные зависимости h=h[(U r-U01)/U01, U01/U 02], предварительно полученные для цилиндрических объектов с различной кривизной поверхности и с продольными трещинами известной глубины h.

Предложенный способ реализуется при измерении глубины продольной трещины с помощью схемы контроля, приведенной на фиг.1. На ней показан электропотенциальный преобразователь 1, состоящий из двух токовых электродов 2.1, 2.2 и двух потенциальных электродов 3.1, 3.2, а также источник 4 постоянного тока, соединенный выходом с токовыми электродами 2.1, 2.2, и блок 5 измерения и обработки информации, соединенный своим входом с потенциальными электродами 3.1, 3.2.

rnrnrnrnrnrnrnrnrn

Способ реализуется следующим образом. Электропотенциальный преобразователь 1 устанавливают на дефектном участке контролируемого объекта 6 с трещиной 7 по линии, перпендикулярной к следу трещины 7 на поверхности, симметрично относительно него. С помощью источника 4 тока и токовых электродов 2.1, 2.2 пропускают электрический ток I через дефектный участок. Используя блок 5 измерения и обработки информации, измеряют напряжение Ur между потенциальными электродами и запоминают его величину. Затем выбирают бездефектный участок контролируемого объекта 6, имеющий такую же форму поверхности, что и на дефектном участке, устанавливают электропотенциальный преобразователь 1 на выбранном участке с ориентацией, соответствующей ориентации на участке с трещиной 7. В данном случае для этого электроды 2.1, 2.2, 3.1 и 3.2 устанавливают вдоль оси объекта 6. С помощью источника 4 тока и токовых электродов 2.1, 2.2 пропускают электрический ток I через бездефектный участок. Используя блок 5 измерения и обработки информации, измеряют напряжение U01 между потенциальными электродами 3.1, 3.2 и запоминают его величину. Далее устанавливают электропотенциальный преобразователь 1 на бездефектном участке в направлении, ортогональном первой установке. Для этого электроды 2.1, 2.2, 3.1 и 3.2 устанавливают на части окружности, образованной пересечением внешней цилиндрической поверхности объекта 6 и плоскости, перпендикулярной к его оси. После этого, с помощью источника 4 тока и токовых электродов 2.1, 2.2 пропускают электрический ток I через бездефектный участок при новой ориентации электропотенциального преобразователя 1. Используя блок 5 измерения и обработки информации, измеряют напряжение U02 между потенциальными электродами 3.1, 3.2 и запоминают его.

Затем с помощью блока 5 измерения и обработки информации, используя измеренные значения Ur, U 01 и U02, вычисляют относительное изменение напряжения (Ur-U01)/U01 и отношение U01/U02.

Отношение U 01/U02 однозначно связано с кривизной цилиндрического объекта 6 диаметром D, что иллюстрируется зависимостью, приведенной на фиг.2. Для обобщения результатов удобно воспользоваться нормированным параметром D/RT, где RT - расстояние между токовыми электродами 2.1 и 2.2. Таким образом, с помощью блока 5 измерения и обработки информации, по совокупности значений (Ur-U01)/U01 и U01 /U02 можно определить глубину h трещины с учетом влияния кривизны поверхности. Для этого используют введенные в память блока 5 градуировочные зависимости h=h[(Ur-U01 /U01, U01/U02], предварительно полученные для цилиндрических объектов с различной кривизной поверхности и с продольными трещинами известной глубины h. Соответствующие градуировочные зависимости для измерения глубины продольных трещин приведены на фиг.3. Зависимости, приведенные на фиг.2 и фиг.3, получены для электропотенциального преобразователя с расстоянием RT=20 мм между токовыми электродами и с расстоянием Rп=2 мм между потенциальными электродами 3.1 и 3.2.

Измерение глубины поперечных трещин согласно заявляемому способу выполняется аналогично. При этом электропотенциальный преобразователь 1 устанавливается относительно поперечной трещины 7, так как это показано на фиг.4, а градуировочные зависимости h=h[(Ur-U01)/U01, U01 /U02], предварительно полученные для цилиндрических объектов с различной кривизной поверхности и с поперечными трещинами известной глубины h, имеют вид, приведенный на фиг.5.

Технический результат, достигаемый при использовании предложенного способа, состоит в снижении трудоемкости и повышении оперативности измерений за счет исключения необходимости измерения кривизны поверхности с помощью дополнительных средств и ввода результата измерения в блок обработки информации. Наиболее существенный эффект достигается при выполнении измерения на сложнопрофильных поверхностях с переменной кривизной поверхности, например, при измерении глубины трещин, выходящих на поверхность лопаток паровых турбин.

Источники информации

1. Ritchie R.O., Bathe K.J. On the calibration of the electrical potential technique for monitoring crack growth using finite element methods//International Journal of Fracture, Vol.15, No.1, February 1979, Pages 47-55.

2. Gandossi L., Summers S.A., Taylor N.G., Hurst R.C., Hulm B.J., Par-ker J.D. The potential drop method for monitoring crack growth in real components subjected to combined fatigue and creep conditions: application of FE techniques for deriving calibration curves//International Journal of Pressure Vessels and Piping- Volume 78, Issues 11-12, 12 November 2001, Pages 881-891 (прототип).


Формула изобретения

Способ измерения глубины трещины электропотенциальным методом на участках с цилиндрической формой поверхности, заключающийся в том, что устанавливают на участке с трещиной электропотенциальный преобразователь, состоящий из двух токовых и двух потенциальных электродов по линии, перпендикулярной к следу трещины на поверхности, симметрично относительно него, пропускают электрический ток I и измеряют напряжение Ur между потенциальными электродами, выбирают бездефектный участок контролируемого объекта, имеющий такую же форму поверхности, что и на контролируемом участке с трещиной, устанавливают электропотенциальный преобразователь на выбранном участке с ориентацией, соответствующей ориентации на участке с трещиной, измеряют напряжение U01 между потенциальными электродами, вычисляют относительное изменение напряжения на дефектном участке (Ur-U01 )/U01 и используют его для определения глубины трещины, отличающийся тем, что повторно устанавливают электропотенциальный преобразователь на бездефектном участке в направлении ортогональном первой установке, измеряют напряжение U02 между потенциальными электродами, а о параметрах дефекта судят по отношениям (U r-U01)/U01 и U01/U 02, используя градуировочные зависимости h=h[(Ur -U01)/U01, U01/U02 ], предварительно полученные для цилиндрических объектов с различной кривизной поверхности и с трещинами известной глубины.

Имя изобретателя: Шкатов Петр Николаевич (RU), Елисов Алексей Алнександрович (RU)
Имя патентообладателя: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" (RU)
Почтовый адрес для переписки: 107996, Москва, ул. Стромынка, 20, МГУПИ
Дата начала отсчета действия патента: 19.03.2013

Разместил статью: miha111
Дата публикации:  5-11-2014, 01:22

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Имя не указано

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Взрывобезопасный газовый баллон. Процесс изготовления.
Взрывобезопасный газовый баллон. Процесс изготовления....

Устройство для сбора нефти с поверхности воды
Изобретение относится к гидротехнике, в частности к устройствам для разделения несмешивающихся жидкостей, и может использоваться при очистке сточных вод, загрязненных маслами, нефтью и другими веществами. Устройство содержит бесконечную ленту, установленную на ведущем и натяжном барабанах с осями. Оси барабанов расположены на общей раме, которая закреплена на судне. Натяжной барабан находится на поверхности воды и выполнен из магнитного материала. Для горизонтального расположения верхней части...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: пале или поле?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Водоочистка
  • Альтернативные и нетрадиционные источники энергии
  • Инновационные решения в топливной энергетике
  • Инновационные решения в двигателестроении
  • Инновации в решении экологических проблем
  • Инновационные решения в медицине
    • Инструментальные психотехнологии Чаусовского
  • Инновационные решения в сельском хозяйстве
  • Инновационные решения в машиностроении
  • Котельное оборудование
  • Инновационные решения в электронике и электротехни
  • Инновационные решения в стройиндустрии
  • Инновационные решения в автомобилестроении
  • Летательные аппараты
⇩ Интересное ⇩
Способ получения нефтекаменноугольного пека

Способ получения нефтекаменноугольного пека Изобретение может быть использовано в электродной промышленности и строительстве. Способ получения нефтекаменноугольного пека из смолы включает…
читать статью
Инновационные решения в топливной энергетике
Приготовление водо-мазутных эмульсий на аппаратах «БРАВО»

Приготовление водо-мазутных эмульсий на аппаратах «БРАВО» Предлагается взаимодействие по использованию инновационного оборудования наших аппаратов для приготовления водо-топливных эмульсий из нефтешламов, а…
читать статью
Инновационные решения в топливной энергетике
Кольцевое металлическое ядерное топливо с защитной оболочкой

Кольцевое металлическое ядерное топливо с защитной оболочкой Изобретение относится к ядерному топливу и тепловыделяющим элементам ядерного реактора. Металлический стержневой твэл включает кольцевое ядерное…
читать статью
Инновационные решения в топливной энергетике
Электроэнергетическая система для перспективных неатомных подводных лодок

Электроэнергетическая система для перспективных неатомных подводных   лодок Изобретение относится к судовой электротехнике, а именно для использования на перспективных неатомных подводных лодках и в подводных аппаратах с…
читать статью
Инновационные решения в топливной энергетике
Выбор способа исследований технологии получения синтетического бензина

Выбор способа исследований технологии получения синтетического бензина Технологии получения синтетического бензина из древесины и каменного угля могут иметь особое значение для таких поселений людей как бывшие…
читать статью
Инновационные решения в топливной энергетике
Устройство для переработки твердого топлива

Устройство для переработки твердого топлива Изобретение относится к области металлургии, энергетики и химической промышленности при слоевой газификации твердого топлива с целью получения…
читать статью
Инновационные решения в топливной энергетике
Аэратор топливной смеси ДВС

Аэратор топливной смеси ДВС Устройство применяемое в работе совместно с двигателем внутреннего сгорания (ДВС) и обеспечивающее его работу со значительно меньшим расходом…
читать статью
Инновационные решения в топливной энергетике
Тепловой аккумулятор и способ его изготовления

Тепловой аккумулятор и способ его изготовления Изобретение относится к тепловому аккумулятору, в частности к тепловому аккумулятору для регулирования теплового состояния устройства, установленного…
читать статью
Инновационные решения в топливной энергетике
Взрывобезопасный газовый баллон. Процесс изготовления.

Взрывобезопасный газовый баллон. Процесс изготовления. Взрывобезопасный газовый баллон. Процесс изготовления.
читать статью
Инновационные решения в топливной энергетике
Способ получения зимнего дизельного топлива

Способ получения зимнего дизельного топлива Изобретение относится к процессам нефтепереработки. Изобретение касается способа получения зимнего дизельного топлива из сернистых нефтей,…
читать статью
Инновационные решения в топливной энергетике
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
pi31453_53
Публикаций: 9
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
Patriotjpa
Публикаций: 0
Комментариев: 0
kapriolree
Публикаций: 0
Комментариев: 0
gustavoytd
Публикаций: 0
Комментариев: 0
Mihaelsjp
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru