Загрузка. Пожалуйста, подождите...

Независимый научно-технический портал

RSS Моб. версия Реклама
Главная О портале Регистрация
Независимый Научно-Технический Портал NTPO.COM приветствует Вас - Гость!
  • Организации
  • Форум
  • Разместить статью
  • Возможен вход через:
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Способ извлечения золота и серебра из полиметаллического сырья
Изобретения Российской Федерации » Извлечение цветных и редкоземельных металлов
Способ извлечения золота и серебра из полиметаллического сырья Ноу-хау разработки, а именно данное изобретение автора относится к гидрометаллургии благородных металлов, в частности к способам извлечения золота и серебра из различных видов полиметаллического сырья, в состав которого могут входить медь, никель, олово, свинец, нержавеющая сталь и другие металлы. Технический результат - селективное извлечение золота и серебра из токопроводящих материалов, обеспечивающий высокие скорости растворения драгоценных металлов. Способ заключается в обработке...
читать полностью


» Физика
Добавить в избранное
Мне нравится 0


Сегодня читали статью (1)
Пользователи :(0)
Пусто

Гости :(1)
0
Добавить эту страницу в свои закладки на сайте »

Способ измерения удельной поверхности материалов


Отзыв на форуме  Оставить комментарий

ИЗОБРЕТЕНИЕ
Заявка на изобретение RU2014124412/28, 17.06.2014

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2569347

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к области физико-химического анализа, а именно - к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Многочисленные методы измерения УП дисперсных и пористых материалов, основанные на сорбции газов (азота, аргона) на дисперсные и пористые материалы с последующей десорбцией и определением десорбированного газа в смеси с газом-носителем детектором по теплопроводности, предназначены для определения УП на уровне 0,1÷1000 м2/г. Компактные материалы имеют УП на один-два порядка меньше и для того, чтобы получить заметный пик десорбированного газа в детекторе по теплопроводности, необходимо стандартную пробу (~1 мг) увеличивать в 100÷1000 раз. При этом в процессе десорбции, связанном с резким нагревом пробы, последняя прогревается длительное время, десорбированный газ поступает в детектор медленно (более 10 с) и пик анализируемого газа размазывается, что приводит к резкому росту погрешности измерений (от 2÷5% до 20÷40%).

Актуальность определения УП компактных материалов объясняется тем, что в гетерогенных химических процессах типа газ1+тв газ2, ж1+тв ж2 скорость процесса определяют как изменение массы образца, отнесенное к времени испытаний и площади поверхности образца, которую принимают равной геометрической, т.е. произведению длины образца на его ширину для случая прямоугольного образца. Это приводит к завышению скорости гетерогенных процессов на один-два порядка. Этот факт и объясняет необходимость определения УП компактных материалов.

 

Известен блок адсорбера сорбтометра, который используется в устройствах для определения удельной поверхности материалов. Из описания данного патента известен способ определения УП материалов, включающий создание стационарного потока смеси гелия и аргона с заданным постоянным составом, тренировку поверхности путем нагрева до температуры 350÷700 К, адсорбцию аргона из смеси при температуре 77 К, десорбцию аргона путем нагрева до 200÷300 К и измерения концентрации аргона в смеси с помощью детектора по теплопроводности (Патент РФ 2073860, МПК G01N 30/00, опубл. 20.02.1997).

rnrnrnrnrnrnrnrnrn

Недостатки способа:

1. Низкая точность измерений, обусловленная дрейфом нулевой линии хроматографа при изменении температуры газа от 77 К до 300 К с соответствующими увеличениями объема газа, объемной и линейной скорости.

2. Невозможность определения с достаточной точностью величины УП на уровне 0,001÷0,01 м2/г в компактных материалах.

Наиболее близким аналогом, принятым за прототип, является способ измерения УП материалов, включающий подачу адсорбата из камеры с источником адсорбата в камеру с исследуемым материалом, регулирование температуры камеры с исследуемым материалом для обеспечения сорбции адсорбата с последующей десорбцией адсорбата и определения его количества. В известном способе испытуемый образец помещают в стационарный поток газовой смеси, охлаждают образец до температуры 77 К, выдерживают образец до установления динамического равновесия между газовой и адсорбированной фазами, далее проводят нагрев образца и определяют концентрацию десорбированного газа, причем объем с испытуемым образцом заполняют материалом с низкой УП и низкой теплопроводностью для уменьшения объема нагреваемого при десорбции газа и, тем самым, для уменьшения дрейфа нулевой линии (Патент РФ 2196319, МПК G01N 15/08, опубл. 10.01.2003).

Недостаток способа-прототипа заключается в недостаточной точности определения величины УП дисперсных и пористых материалов и отсутствии возможности измерения УП в компактных материалах.

Задача и достигаемый при использовании изобретения технический результат - повышение точности измерения УП дисперсных, пористых и компактных материалов с одновременным расширением диапазона измерения УП от 10-3 м2/г до 103 м2/г.

Поставленная задача решается тем, что в заявленном способе измерения УП, включающем подачу адсорбата из камеры с источником адсорбата в камеру с исследуемым материалом, регулирование температуры камеры с исследуемым материалом для обеспечения сорбции адсорбата с последующей десорбцией адсорбата и определение его количества, согласно изобретению в качестве адсорбата используют серебро, а перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют, при этом для обеспечения сорбции температуру камеры с источником поддерживают на уровне 500÷550°C, а температуру камеры с исследуемым материалом поддерживают на 20÷30°C выше температуры камеры с источником, затем обе камеры повторно продувают инертным газом и вакуумируют, далее проводят десорбцию серебра селективным растворителем при комнатной температуре с дальнейшим анализом количества серебра в растворе спектральным методом.

При этом, например, в качестве селективного растворителя можно использовать одномолярную азотную кислоту. А в качестве спектрального метода используют метод индуктивно-связанной плазмы. Процесс сорбции проводят в течение 15-30 минут.

 

rnrnrnrnrnrnrnrnrn

 

 

Сущность заявленного изобретения поясняется графическими изображениями.

На фиг. 1 представлена экспериментальная установка для реализации предложенного способа.

На фиг. 2 представлена профилограмма поверхности шлифованного образца сплава ЖС6 с размером шероховатости на уровне 1,2 мкм.

На фиг. 3 представлена профилограмма поверхности полированного образца сплава ЖС6 с размером шероховатости на уровне 26 нм.

Экспериментальная установка для реализации предложенного способа включает:

1 - камеру с источником серебра

2 - источник серебра

3 - нагреватели

4 - трубопровод

5 - вентиль подачи инертного газа

6 - камеру с исследуемым материалом

rnrnrnrnrnrnrnrnrn

7 - исследуемый материал

8 - термопары

9 - вакуумный насос

10 - вентиль трубопровода

11 - вентиль вакуумного насоса

Предварительно перед сорбцией камеру с источником (1), соединенную с камерой с исследуемым материалом (6) через трубопровод (4), продувают инертным газом (например аргоном), открыв вентиль подачи инертного газа (5). Затем прекращают подачу инертного газа (аргона) и камеру с источником (1), соединенную с камерой с исследуемым материалом (6) посредством трубопровода (4), вакуумируют, для чего перекрывают вентиль подачи инертного газа (5). После вакуумирования закрывают вентиль трубопровода (10) и вентиль вакуумного насоса (11). Далее для обеспечения сорбции температуру камеры с источником (1) и трубопровода (4) поддерживают на уровне 500÷550°C, температуру камеры с исследуемым материалом поддерживают на 20÷30°C выше температуры камеры с источником (520-580°C) при помощи нагревателей (3). При достижении заданных температур вентиль трубопровода (10) открывают, тем самым уравновешивая давление серебра в камерах (1) и (6) и обеспечивая его поток. По истечении времени сорбции открывают вентили инертного газа (5) и вакуумного насоса (11), а камеры (1) и (6) повторно продувают инертным газом, а далее вакуумируют при помощи вакуумного насоса (9). После чего закрывают вентиль для подачи инертного газа (5), вентиль трубопровода (10) и вентиль вакуумного насоса (11), а камеры (1) и (6) охлаждают до комнатной температуры. И проводят десорбцию серебра селективным растворителем при комнатной температуре с дальнейшим анализом количества серебра в растворе спектральным методом.

Предложенный способ обосновывается следующим образом. В диапазоне температур 500÷550°C давление насыщенного пара серебра составляет 10-8 Па (Пипко А.И., Плисковский В.Я., Пенчко Е.А. Конструирование и расчет вакуумных систем. М., Энергия, 1979 г., с. 491). Температуру камеры с исследуемым материалом выбирают выше температуры источника для предотвращения конденсации серебра, т.к. при пониженной температуре камеры давление насыщенного пара серебра станет ниже давления пара источника серебра.

Предварительные эксперименты показали, что насыщение поверхности испытуемых образцов происходит за время 15÷30 минут. После десорбции серебра с испытуемых материалов одномолярной азотной кислотой объемом 30÷50 мл проводили измерение количества серебра на спектрометре индуктивно-связанной плазмы ИСП «Эридан 500» с чувствительностью 4·10-8 мкг.

Расчет УП материалов проводили по формуле:

где S - площадь геометрической поверхности образца,

m1 - количество сорбированного серебра,

m2 - расчетное количество сорбированного серебра на 1 см2 геометрической площади,

М - масса образца.

Из формулы (1) видно, что величина УП тем больше, чем больше отношение . Величина m2 является фиксированной для 1 см 2 геометрической площади. Действительно, для площади поперечного сечения и массы атома серебра соответственно 3,84·10 -15 см2 и 1,8·10-19 мг величину m2 находят по формуле:

где S2=1 см2,

S3 - площадь поперечного сечения атома серебра.

Примеры осуществления способа измерения УП материалов.

Пример 1. Определяли величину УП пористого образца графита марки МПГ в виде куба с ребром 5 мм плотностью 1,8 г/см3. Перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продували инертным газом и вакуумировали. Для обеспечения сорбции температуру камеры с источником поддерживали на уровне 520°C, а температуру камеры с исследуемым материалом выбрали равной 540°C. Подавали серебро из камеры с источником в камеру с исследуемым материалом. Процесс сорбции продолжался 30 мин. Затем обе камеры повторно продували инертным газом и вакуумировали. Десорбцию серебра проводили при комнатной температуре селективным растворителем - одномолярной азотной кислотой. Далее проводили анализ количества серебра в растворе спектральным методом - методом индуктивно-связанной плазмы. В результате эксперимента получены следующие данные:

S=1,5 см2,

m1 =16 мг, m2=2,4·10-3 мг, М=0,22 г.

Теперь величина УП по формуле (1) составит

Для сравнения величину УП определяли способом, предложенным в прототипе (который по существу является разновидностью метода БЭТ) с использованием газовой хроматографии. При этом величина УП составила 4,7 м2/г.

Пример 2. Определяли величину УП дисков жаропрочного сплава ЖС6 после шлифовки образцов площадью 1 см2. Рельеф поверхности образца сплава показан на фиг. 2.

Перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продували инертным газом и вакуумировали. Для обеспечении сорбции температуру камеры с источником поддерживали на уровне 550°C, а температуру камеры с исследуемым материалом выбрали равной - 570°C. Подавали серебро из камеры с источником в камеру с исследуемым материалом. Процесс сорбции продолжался 20 мин. Затем обе камеры повторно продували инертным газом и вакуумировали. Десорбцию серебра проводили при комнатной температуре селективным растворителем - одномолярной азотной кислотой. Далее проводили анализ количества серебра в растворе спектральным методом - методом индуктивно-связанной плазмы. В результате эксперимента получены следующие данные:

S=2 см2 (учитывались обе стороны диска), m1=0,3 мг, m2=4,8·10 -3 мг, М=0,7 г.

Теперь величина УП по формуле (1) составит

Пример 3. Определяли величину УП сплава ЖС 6 после полировки образцов площадью 1 см2.

Рельеф поверхности образцов показан на фиг. 3.

Перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продували инертным газом и вакуумировали. Для обеспечении сорбции температуру камеры с источником поддерживали на уровне 500°C, а температуру камеры с исследуемым материалом выбрали равной - 520°C. Подавали серебро из камеры с источником в камеру с исследуемым материалом. Процесс продолжался 30 мин. Затем обе камеры повторно продували инертным газом и вакуумировали. Десорбцию серебра проводили при комнатной температуре селективным растворителем - одномолярной азотной кислотой. Далее проводили анализ количества серебра в растворе спектральным методом - методом индуктивно-связанной плазмы. В результате эксперимента получены следующие данные: S=2 см2, m1=0,03 мг, m2=4,8·10-3 мг, М=0,7 г.

Величина УП составила

Таким образом, предложенное изобретение повышает точность измерений УП дисперсных, пористых и компактных материалов с одновременным расширением диапазона измерения УП от 10-3 м2/г до 103 м2 /г. А кроме того, обеспечивает в процессе измерений очистку поверхности образцов от сорбированных газов (O2, N2 , СО, CO2) за счет проведения процесса при температуре в заявленных пределах.


Формула изобретения

1. Способ измерения удельной поверхности материалов, включающий подачу адсорбата из камеры с источником адсорбата в камеру с исследуемым материалом, регулирование температуры камеры с исследуемым материалом для обеспечения сорбции адсорбата с последующей десорбцией адсорбата и определение его количества, отличающийся тем, что в качестве адсорбата используют серебро, а перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют, для обеспечения сорбции температуру камеры с источником поддерживают на уровне 500÷550°C, а температуру камеры с исследуемым материалом поддерживают на 20÷30°C выше температуры камеры с источником, затем обе камеры повторно продувают инертным газом и вакуумируют, далее проводят десорбцию серебра селективным растворителем при комнатной температуре, с дальнейшим анализом количества серебра в растворе спектральным методом.

2. Способ по п. 1, отличающийся тем, что в качестве селективного растворителя используют одномолярную азотную кислоту.

3. Способ по п. 1, отличающийся тем, что в качестве спектрального метода используют метод индуктивно-связанной плазмы.

rnrnrnrnrnrnrnrnrn

4. Способ по п. 1, отличающийся тем, что процесс сорбции проводят в течение 15-30 минут.

Имя изобретателя: Исаков Виктор Павлович (RU), Галев Иван Эдуардович (RU), Любезнова Елена Николаевна (RU), Федоров Евгений Николаевич (RU)
Имя патентообладателя: Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") (RU)
Почтовый адрес для переписки: 142100, Московская обл., г. Подольск, ул. Железнодорожная, 24, Исполнительному директору ФГУП "НИИ НПО "ЛУЧ" П.А. Зайцеву
Дата начала отсчета действия патента: 17.06.2014

Разместил статью: miha111
Дата публикации:  11-12-2015, 07:47

html-cсылка на публикацию
⇩ Разместил статью ⇩

avatar

Имя не указано

 Его публикации 


Нужна регистрация

Отправить сообщение
BB-cсылка на публикацию
Прямая ссылка на публикацию
Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Измеритель доплеровской фазы пассивных помех
Изобретение относится к радиотехнике и предназначено для измерения доплеровских сдвигов фазы пассивных помех; может быть использовано в адаптивных устройствах режектирования пассивных помех для измерения тригонометрических функций (косинуса и синуса) текущих значений доплеровской фазы многочастотных пассивных помех. Измеритель доплеровской фазы пассивных помех содержит два блока оценивания фазы, два блока комплексного умножения, два блока задержки, синхрогенератор, два умножителя, четыре...

Ускоритель для двух пучков частиц для создания столкновения
Изобретение относится к ускорителю для ускорения и столкновения двух пучков заряженных частиц. Заявленное устройство содержит устройство формирования потенциального поля для формирования электростатического потенциального поля, которое создается таким образом, что посредством электростатического поля могут ускоряться или замедляться два пучка заряженных частиц, реакционную зону, в которой происходит столкновение обоих пучков заряженных частиц. При этом предусмотрено наличие первого участка...








 

Оставьте свой комментарий на сайте

Имя:*
E-Mail:
Комментарий (комментарии с ссылками не публикуются):

Ваш логин:

Вопрос: пале или поле?
Ответ:*
⇩ Информационный блок ⇩

Что ищешь?
⇩ Реклама ⇩
Loading...
⇩ Категории-Меню ⇩
  • Новейшие исследования и открытия в физике
  • Альтернативная физика
  • Полезная информация для студентов
⇩ Интересное ⇩
Способ обнаружения радиоактивных аномалий в природных средах

Способ обнаружения радиоактивных аномалий в природных средах Изобретение относится к области радиоактивных измерений. Технический результат - повышение оперативности статистически обеспеченного детектирования…
читать статью
Физика
Антиматерия

Антиматерия Данная статья завершает цикл статей «Альтернативная физика Материи» на сайте ntpo.com: «Генезис Материи», «Эволюция…
читать статью
Физика, Альтернативная физика
Способ измерения теплофизических свойств твердых материалов методом плоского мгновенного источника тепла

Способ измерения теплофизических свойств твердых материалов методом   плоского мгновенного источника тепла Изобретение относится к области исследования теплофизических характеристик материалов и может быть использовано при тепловых испытаниях твердых…
читать статью
Физика
Схема возбуждения магнитного подшипника

Схема возбуждения магнитного подшипника Изобретение относится к силовой электронике, в частности к усовершенствованной системе возбуждения магнитного подшипника. Достигаемый технический…
читать статью
Физика
Устройство для измерения параметров диэлектриков при нагреве

Устройство для измерения параметров диэлектриков при нагреве Изобретение относится к технике измерения диэлектриков методом объемного резонатора при нагреве в диапазоне температур до 2000°C. Устройство…
читать статью
Физика
Немагнитное измерение азимута с использованием мет электрохимических датчиков

Немагнитное измерение азимута с использованием мет электрохимических   датчиков В изобретении предлагается новая категория инерциальных датчиков (линейных и угловых акселерометров, гироскопов, инклинометров и сейсмоприемников),…
читать статью
Физика
Волоконно-оптический преобразователь линейного ускорения на основе оптического туннельного эффекта

Волоконно-оптический преобразователь линейного ускорения на основе   оптического туннельного эффекта Изобретение относится к области приборостроения, в частности к устройствам для измерения линейного ускорения. Волоконно-оптический преобразователь…
читать статью
Физика
Магнитный туннельный переход, содержащий поляризующий слой

Магнитный туннельный переход, содержащий поляризующий слой Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении высокого туннельного магнитосопротивления, равного…
читать статью
Физика
RemoteFork

RemoteFork RemoteFork
читать статью
Физика
Измеритель доплеровской фазы пассивных помех

Измеритель доплеровской фазы пассивных помех Изобретение относится к радиотехнике и предназначено для измерения доплеровских сдвигов фазы пассивных помех; может быть использовано в адаптивных…
читать статью
Физика
⇩ Вход в систему ⇩

Логин:


Пароль: (Забыли?)


 Чужой компьютер
Регистрация
и подписка на новости
⇩ Ваши закладки ⇩
Функция добавления материалов сайта в свои закладки работает только у зарегистрированных пользователей.
⇩ Новые темы форума ⇩
XML error in File: http://www.ntpo.com/forum/rss.xml
⇩ Каталог организаций ⇩
- Добавь свою организацию -
XML error in File: http://www.ntpo.com/org/rss.php
⇩ Комментарии на сайте ⇩

  • Zinfira_Davletova 07.05.2019
    Природа гравитации (5)
    Zinfira_Davletova-фото
    Очень интересная тема и версия, возможно самая близкая к истине.

  • Viktor_Gorban 07.05.2019
    Способ получения электрической ... (1)
    Viktor_Gorban-фото
     У  Скибитцкого И. Г. есть более свежее  изобретение  патент  России RU 2601286  от  2016 года
     также ,  как  и это  оно  тоже  оказалось  не востребованным.

  • nookosmizm 29.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Никакого начала не было - безконечная вселенная существует изначально, априори как безконечное пространство, заполненное  энергией электромагнитных волн, которые также существуют изначально и материей, которая  состоит из атомов и клеток, которые состоят из вращающихся ЭМ волн.
    В вашей теории есть какие-то гравитоны, которые состоят из не известно чего. Никаких гравитонов нет - есть магнитная энергия, гравитация - это магнитное притяжение.


    Никакого начала не было - вселенная, заполненная энергией ЭМ волн , существует изначально.

  • yuriy_toykichev 28.04.2019
    Энергетическая проблема решена (7)
    yuriy_toykichev-фото
    То есть, никакой энергетической проблемы не решилось от слова совсем. Так как для производства металлического алюминия, тратится уймище энергии. Производят его из глины, оксида и гидроксида алюминия, понятно что с дико низким КПД, что бы потом его сжечь для получения энергии, с потерей ещё КПД ????
    Веселенькое однако решение энергетических проблем, на такие решения никакой энергетики не хватит.

  • Andrey_Lapochkin 22.04.2019
    Генератор на эффекте Серла. Ко ... (3)
    Andrey_Lapochkin-фото
    Цитата: Adnok
    Вместо трудновыполнимых колец, я буду использовать,цилиндрические магниты, собранные в кольцевой пакет, в один, два или три ряда. На мой взгляд получиться фрактал 1 прядка. Мне кажется, что так будет эффективней, в данном случае. И в место катушек, надо попробывать бифиляры или фрактальные катушки. Думаю, хороший будет эксперимент.

    Если что будет получаться поделитесь +79507361473

  • nookosmizm 14.04.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Проблема в том, что человечество зомбировано религией, что бог создал всё из ничего. Но у многих не хватает ума подумать, а кто создал бога? Если бога никто не создавал - значит он существует изначально. А почему самому космосу и самой вселенной как богу-творцу - нельзя существовать изначально? 
    Единственным творцом материального мира, его составной субстанцией, источником движения и самой жизни является энергия космоса, носителем которой являются ЭМ волны, которыми как и полагается богу заполнено всё космическое пространство, включая атомы и клетки.


    В начале было то, что есть сейчас. 

  • alinzet 04.04.2019
    Новая теория мироздания - прир ... (5)
    alinzet-фото
    Но ведь это и есть эфир а не темная материя хотя эфир можете называть как вам угодно и суть от этого не изменится 

  • valentin_elnikov 26.03.2019
    Предложение о внедрении в прои ... (7)
    valentin_elnikov-фото
    а м?ожет лампочку прямо подключать к силовым линиям,хотя они и тонкие

  • serzh 12.03.2019
    Вода - энергоноситель, способн ... (10)
    serzh-фото
    От углеводородов кормится вся мировая финансовая элита, по этому они закопают любого, кто покусится на их кормушку. Это один. Два - наличие дешевого источника энергии сделает независимым от правительств стран все население планеты. Это тоже удар по кормушке.

  • nookosmizm 06.03.2019
    Вселенная. Тёмная материя. Гр ... (11)
    nookosmizm-фото
    Вначале было то, что существует изначально и никем не создавалось. А это
    - безграничное пространство космоса
    - безграничное время протекания множества процессов различной длительности
    - электромагнитная энергия, носителем которой являются ЭМ волны, которыми как и положено творцу (богу) материального мира, заполнено всё безграничное пространство космоса, из энергии ЭМВ состоят атомы и клетки, то есть материя.
    Надо различать материю и не материю. Материя - это то, что состоит из атомов и клеток и имеет массу гравитации, не материя - это энергия ЭМ волн, из которых и состоит материя

⇩ Топ 10 авторов ⇩
pi31453_53
Публикаций: 9
Комментариев: 0
agrohimwqn
Публикаций: 0
Комментариев: 0
agrohimxjp
Публикаций: 0
Комментариев: 0
Patriotzqe
Публикаций: 0
Комментариев: 0
kapriolvyd
Публикаций: 0
Комментариев: 0
agrohimcbl
Публикаций: 0
Комментариев: 0
Patriotjpa
Публикаций: 0
Комментариев: 0
kapriolree
Публикаций: 0
Комментариев: 0
gustavoytd
Публикаций: 0
Комментариев: 0
Mihaelsjp
Публикаций: 0
Комментариев: 0
⇩ Лучшее в Архиве ⇩

Нужна регистрация
⇩ Реклама ⇩

Внимание! При полном или частичном копировании не забудьте указать ссылку на www.ntpo.com
NTPO.COM © 2003-2021 Независимый научно-технический портал (Portal of Science and Technology)
Содержание старой версии портала
  • Уникальная коллекция описаний патентов, актуальных патентов и технологий
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения электроэнергии
    • Устройства и способы получения, преобразования, передачи, экономии и сохранения тепловой энергии
    • Двигатели, работа которых основана на новых физических или технических принципах работы
    • Автомобильный транспорт и другие наземные транспортные средства
    • Устройства и способы получения бензина, Дизельного и других жидких или твердых топлив
    • Устройства и способы получения, хранения водорода, кислорода и биогаза
    • Насосы и компрессорное оборудование
    • Воздухо- и водоочистка. Опреснительные установки
    • Устройства и способы переработки и утилизации
    • Устройства и способы извлечения цветных, редкоземельных и благородных металлов
    • Инновации в медицине
    • Устройства, составы и способы повышения урожайности и защиты растительных культур
    • Новые строительные материалы и изделия
    • Электроника и электротехника
    • Технология сварки и сварочное оборудование
    • Художественно-декоративное и ювелирное производство
    • Стекло. Стекольные составы и композиции. Обработка стекла
    • Подшипники качения и скольжения
    • Лазеры. Лазерное оборудование
    • Изобретения и технологии не вошедшие в выше изложенный перечень
  • Современные технологии
  • Поиск инвестора для изобретений
  • Бюро научных переводов
  • Большой электронный справочник для электронщика
    • Справочная база данных основных параметров отечественных и зарубежных электронных компонентов
    • Аналоги отечественных и зарубежных радиокомпонентов
    • Цветовая и кодовая маркировка отечественных и зарубежных электронных компонентов
    • Большая коллекция схем для электронщика
    • Программы для облегчения технических расчётов по электронике
    • Статьи и публикации связанные с электроникой и ремонтом электронной техники
    • Типичные (характерные) неисправности бытовой техники и электроники
  • Физика
    • Список авторов опубликованных материалов
    • Открытия в физике
    • Физические эксперименты
    • Исследования в физике
    • Основы альтернативной физики
    • Полезная информация для студентов
  • 1000 секретов производственных и любительских технологий
    • Уникальные технические разработки для рыбной ловли
  • Занимательные изобретения и модели
    • Новые типы двигателей
    • Альтернативная энергетика
    • Занимательные изобретения и модели
    • Всё о постоянных магнитах. Новые магнитные сплавы и композиции
  • Тайны космоса
  • Тайны Земли
  • Тайны океана
Рейтинг@Mail.ru